Page 1 od 45 rezultati
In this study we evaluated the functionality and inflammatory effects of P2Y14 receptors in murine N9 microglia. The selective P2Y14 receptor agonist UDP-glucose (UDPG) derived from microbial sources dose dependently stimulated expression of cyclooxygenase-2 and inducible nitric oxide synthase, and
BACKGROUND
Fructus gardenia is widely used for treatment of stroke and infectious diseases in Chinese medicine. Geniposide is the key bioactive compound related to the pharmacodynamic actions of gardenia on ischemic stroke. The molecular mechanism by which geniposide improves the ischemic brain
6-Thiopurine (6TP) is an actively prescribed drug in the treatment of various diseases ranging from Crohn's disease and other inflammatory diseases to acute lymphocytic leukemia and non-Hodgkin's leukemia. While 6TP has beneficial therapeutic uses, severe toxicities are also reported with its use,
Japanese apricot, Prunus mume Sieb. et Zucc., biosynthesizes the l-phenylalanine-derived cyanogenic glucosides prunasin and amygdalin. Prunasin has biological properties such as anti-inflammation, but plant extraction and chemical synthesis are impractical. In this study, we identified and
Innate mucosal immune responses, including recognition of pathogen-associated molecular patterns through Toll-like receptors, play an important role in preventing infection in the female reproductive tract (FRT). Damaged cells release nucleotides, including ATP and uridine 5'-diphosphoglucose
The nucleotide-sugar-activated P2Y14 receptor (P2Y14-R) is highly expressed in hematopoietic cells. Although the physiologic functions of this receptor remain undefined, it has been strongly implicated recently in immune and inflammatory responses. Lack of availability of receptor-selective
P2 receptors are a class of plasma membrane receptors ligated by extracellular nucleotides and expressed ubiquitously throughout the body. Two main families are known: P2X and P2Y. P2X are ligand (ATP)-gated channels, while P2Y are G-protein-coupled seven membrane-spanning receptors. The P2X and the
In addition to their role in glycosylation reactions, UDP-sugars are released from cells and activate widely distributed cell surface P2Y14 receptors (P2Y14R). However, the physiological/pathophysiological consequences of UDP-sugar release are incompletely defined. Here, we report that UDP-glucose
Clostridium difficile infection (CDI) is the leading cause of hospital-acquired infectious diarrhea, with significant morbidity, mortality, and associated health care costs. The major risk factor for CDI is antimicrobial therapy, which disrupts the normal gut microbiota and allows C. difficile to
Hyaluronan, a major matrix molecule in epidermis, is often increased by stimuli that enhance keratinocyte proliferation and migration. We found that small amounts of UDP-sugars were released from keratinocytes and that UDP-glucose (UDP-Glc) added into keratinocyte cultures induced a specific, rapid
8-Hydroxydaidzein (8-OHDe), an ortho-hydroxylation derivative of soy isoflavone daidzein isolated from some fermented soybean foods, has been demonstrated to possess potent anti-inflammatory activity. However, the isoflavone aglycone is poorly soluble and unstable in alkaline solutions. To
GPR105, a G protein-coupled receptor for UDP-glucose, is highly expressed in several human tissues and participates in the innate immune response. Because inflammation has been implicated as a key initial trigger for type 2 diabetes, we hypothesized that GPR105 (official gene name: P2RY14) might
Uncontrolled inflammation is one of the leading causes of kidney failure. Pro-inflammatory responses can occur in the absence of infection, a process called sterile inflammation. Here we show that the purinergic receptor P2Y14 (GPR105) is specifically and highly expressed in collecting duct
The genus Edwardsiella comprises a genetically distinct taxon related to other members of the family Enterobacteriaceae. It consists of bacteria differing strongly in their biochemical and physiological features, natural habitats, and pathogenic properties. Intrinsic resistance to cationic
Gaucher disease is caused by mutations in GBA1, which encodes the lysosomal enzyme glucocerebrosidase (GCase). GBA1 mutations drive extensive accumulation of glucosylceramide (GC) in multiple innate and adaptive immune cells in the spleen, liver, lung and bone marrow, often leading to chronic