Catalan
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Investigative Ophthalmology and Visual Science 1995-May

Hyperthermia accelerates retinal light damage in rats.

Només els usuaris registrats poden traduir articles
Inicieu sessió / registreu-vos
L'enllaç es desa al porta-retalls
D T Organisciak
R M Darrow
W K Noell
J C Blanks

Paraules clau

Resum

OBJECTIVE

To study the time course of visual cell damage resulting from hyperthermic light exposure and the possible involvement of rod outer segment (ROS) lipids in the process.

METHODS

Rats were acclimated in darkness for 2 hours in a hyperthermic chamber to elevate core body temperature and then exposed to intense green light for up to 4 hours during hyperthermia. After light exposure, the animals were either sacrificed immediately for biochemical or morphologic analysis of retinal light damage or returned to darkness for up to 2 weeks at ambient temperature before analysis. Rod outer segment lipid profiles were characterized, and visual cell loss was determined by rhodopsin and visual cell DNA measurements. Morphology was performed at the light and electron microscopic level.

RESULTS

Retinal damage resulting from hyperthermic light exposure was found to be temperature, time, and light intensity dependent. At an elevated environmental temperature of 34.5 degrees, 50% visual cell loss was found after 1.5 hours of 1100 lux light exposure; the same degree of visual cell loss occurred after only 1 hour when rats were maintained at 37 degrees C. At ambient temperatures, 4 hours of light exposure had no effect on visual cell loss. Irrespective of environmental temperature, when rats were maintained in darkness no visual cell loss occurred. Whereas docosahexaenoic acid (22:6) was unchanged in the purest fraction of ROS isolated immediately after light treatment, a 5 mol% loss of the polyunsaturated fatty acid was found in ROS isolated 2 or 24 hours after light exposure. Rod outer segment lipid composition was largely unaffected by hyperthermic light exposure, but the density of some ROS increased. Morphologically, the ROS appeared to be nearly normal immediately after hyperthermic light exposure and structurally more abnormal 2 and 24 hours later. The retinal pigment epithelium exhibited damage immediately after exposure, which also increased 2 and 24 hours later.

CONCLUSIONS

Hyperthermia in rats dramatically accelerates retinal light damage compared with light exposure under euthermic conditions. Over loss of ROS 22:6 does not occur during hyperthermic light exposure, but it is apparent during the 24-hour period after light treatment. This suggests that the disappearance of 22:6 from ROS occurs in tandem with the process of visual cell death resulting from retinal light damage.

Uneix-te a la nostra
pàgina de Facebook

La base de dades d’herbes medicinals més completa avalada per la ciència

  • Funciona en 55 idiomes
  • Cures a base d'herbes recolzades per la ciència
  • Reconeixement d’herbes per imatge
  • Mapa GPS interactiu: etiqueta les herbes a la ubicació (properament)
  • Llegiu publicacions científiques relacionades amb la vostra cerca
  • Cerqueu herbes medicinals pels seus efectes
  • Organitzeu els vostres interessos i estigueu al dia de les novetats, els assajos clínics i les patents

Escriviu un símptoma o una malaltia i llegiu sobre herbes que us poden ajudar, escriviu una herba i vegeu malalties i símptomes contra els quals s’utilitza.
* Tota la informació es basa en investigacions científiques publicades

Google Play badgeApp Store badge