Iron-induced oxidative stress in a macrophyte: a chemometric approach.
Paraules clau
Resum
Iron-induced oxidative stress in plants of Bacopa monnieri L., a macrophyte with medicinal value, was investigated using the chemometric approach. Cluster analysis (CA) rendered two distinct clusters of roots and shoots. Discriminant analysis (DA) identified discriminating variables (NP-SH and APX) between the root and shoot tissues. Principal component analysis (PCA) results suggested that protein, superoxide dismutase (SOD), ascorbic acid, proline, and Fe uptake are dominant in root tissues, whereas malondialdehyde (MDA), guaiacol peroxidase (POD), cysteine, and non-protein thiol (NP-SH) in shoot of the stress plant. Discriminant partial-least squares (DPLS) results further confirmed that SOD and ascorbic acid contents dominated in root tissues, while NP-SH, cysteine, POD, ascorbate peroxidase (APX), and MDA in shoot. MDA and NP-SH were identified as most pronounced variables in plant during the highest exposure time. The chemometric approach allowed for the interpretation of the induced biochemical changes in plant tissues exposed to iron.