Pàgina 1 des de 44 resultats
UNASSIGNED
Since bacterial strains developed resistance against commonly used antibiotics and side effects became more serious, other alternatives have been postulated. There is an answer for this issue in ancient medicine. Many plants have been proved to provide antibacterial effect. In this study,
BACKGROUND
Methicillin resistance is a serious health concern since it has spread among Staphylococcus aureus and coagulase-negative Staphylococci (CoNS) that are frequent community and nosocomial pathogens worldwide. Methicillin-resistant strains are often resistant to other classes of antibiotics,
The screening of plants for medicinal purposes represents an effort to discover newer, safer, and possibly more effective drugs. Design of the present study was made aiming to the optimization of the antibacterial activity of ethanolic extracts of Eucalyptus tereticornis (leaves) and Nigella sativa
The Essential oil (EO) of Nigella sativa (black cumin) was extracted from the crude oil and the volatile constituents were characterized using gas chromatographic analysis. The EO was formulated in water-based microemulsion system and its antibacterial activity against six pathogenic bacteria was
BACKGROUND
Methicillin resistant Staphylococcus aureus (MRSA) continues to be one of the commonest pathogens encountered in clinical as well as laboratory practice. It has become a major health problem worldwide. Newer antimicrobials/agents are urgently needed to combat this problem MRSA resistance
Nigella sativa (NS) seeds have been used for medicinal purposes for centuries both as herbs and its oil. In Islam it is regarded as one of the greatest forms of healing medicine included in the medicine of prophet Mohammed. Huge number of studies have been carried out in recent years on the
This study reports the biological synthesis of gold nanoparticles using essential oil of Nigella sativa (NsEO-AuNPs). The synthesized NsEO-AuNPs were characterized by UV-visible spectra, X-ray diffraction (XRD), FTIR and Transmission electron microscopy (TEM). UV-vis spectra of NsEO-AuNPs showed
Objective
This study aimed to evaluate the
antibacterial efficacy of
Nigella sativa (NS) seed oil against the most frequently isolated infectious bacteria of the middle and external ear.
Materials and Methods
The in vitro
antibacterial activity of NS
Nigella sativa L. (family Ranunculaceae) is an annual herb of immense medicinal properties because of its major active components (i.e., thymoquinone (TQ), thymohydroquinone (THQ), and thymol (THY)). Plant tissue culture techniques like elicitation, Agrobacterium mediated transformation, hairy root
Salmonella resistance is becoming a worldwide serious health issue in these days; therefore, it is an urgent need to develop some alternative approaches to overcome this problem. Twenty bacterial strains were isolated and purified from different environmental sources and confirmed as Salmonella by
Nigella sativa L. seed essential oils obtained by hydrodistillation (HD), dry steam distillation (SD), steam distillation of crude oils obtained by solvent extraction (SE-SD), and supercritical fluid extraction (SFE-SD) were tested for their antibacterial activities, using the broth microdilution
In the present work, we studied the reduction of gold ions into gold nanoparticles using Nigella arvensis leaf extract in the one-step green synthesis method. The formation of N. arvensis gold nanoparticles (NA-GNPs) was confirmed by UV-Vis spectroscopy, XRD, FT-IR and TEM analyses. The XRD pattern
BACKGROUND
Thymoquinone is an active principle of Nigella sativa seed known as "Habbah Al-Sauda" in Arabic countries and "Sinouj" in Tunisia. Bacterial biofilms tend to exhibit significant tolerance to antimicrobials drugs during infections.
METHODS
The antibacterial activity of Thymoquinone (TQ)
Antimicrobial Nigella sativa seed-based nanocomposite, MnO2/BC, was synthesized and utilized for the water purification through adsorption, and the photocatalytic degradation. MnO2/BC was prepared by co-precipitation method, and characterized using FT-IR, XRD, SEM, TEM, TGA,