Pàgina 1 des de 51 resultats
Focal cerebral ischaemia was induced in rats by occlusion of the left middle cerebral artery. Two days later, infarct volume was determined by magnetic resonance imaging and the concentrations of the polyamines putrescine (PU), spermine and spermidine by HPLC. In control (occluded) animals, PU
Cardiac polyamines are thought to protect the myocardium against harmful stimuli and to be regulated by sympathetic nerve activation. In the present study, polyamines concentrations in non-infarcted myocardium were investigated. Myocardial polyamines contents decreased significantly in the
Changes on specific radioactivity and levels of free nucleotides and polyamines in infarcted and borderline tissue of reperfused dog heart. The changes on specific radioactivity and levels of free nucleotides and polyamines, spermine and spermidine, of reperfused heart show a different behaviour of
OBJECTIVE
Polyamines are mainly restricted to the intracellular space. During focal cerebral ischemia, polyamines are released from the intracellular compartment. Experimental studies have implicated a marked elevation in brain tissue and blood. The aim of our study was to investigate whether the
Free nucleotide, polyamine and nucleic acid synthesis was studied in myocardial acute ischemia and reperfusion. An early stimulation of biosynthesis of these compounds was observed during ischemia, than later, a remarkable decrease of their specific radioactivity appeared. Reperfusion experiments
Ornithine decarboxylase (ODC) is the first rate-limiting enzyme in polyamine biosynthesis, which is essential for cell survival. We hypothesized that the ODC/polyamine system is involved in ischemic preconditioning (IPC)-mediated cardioprotection through the activation of Erk1/2 and Akt and through
Polyamines and N-methyl-D-aspartate (NMDA) receptors are both thought to play an important role in secondary neuronal injury after cerebral ischemia. Ifenprodil, known as a noncompetitive inhibitor of polyamine sites at the NMDA receptor, was studied after transient focal cerebral ischemia occurred.
It has been widely recognized that glutamate (Glu)-induced cytotoxicity, intracellular calcium overload and excessive free radical production are the key players in the development and progression of ischemic brain injury. Since MK-801, an antagonist of N-methyl-d-aspartate (NMDA) receptor, showed
We have shown recently that acrolein is strongly involved in cell damage during brain infarction and chronic renal failure. To study the mechanism of acrolein detoxification, we tried to isolate Neuro2a cells with reduced sensitivity to acrolein toxicity (Neuro2a-ATD cells). In one cell line,
Polyamines (putrescine, spermidine, and spermine) play an essential role in cell growth, differentiation, and apoptosis. Protein kinase C (PKC) stimulates polyamine biosynthesis through the induction of ornithine decarboxylase (ODC), a rate-limiting enzyme in polyamine biosynthesis. Activation of
Polyamines (putrescine, spermidine, and spermine) are essential polycations that play important roles in various physiological and pathophysiological processes in mammalian cells. The study was to investigate their role in cardioprotection against ischemia/reperfusion (I/R) injury and the underlying
This study examines the pathophysiology of stroke secondary to focal cerebral ischemia. The interaction of arachidonic acid metabolites and polyamines, a class of ubiquitous ornithine-derived molecules with important membrane effects on edema, Ca++-dependent endocytosis, platelet function, and
OBJECTIVE
Upregulation of arginase redirects the arginine metabolism from nitric oxide (NO) synthesis to the formation of polyamine and proline, thus causing cardiac dysfunction. NO synthesis is also impaired by asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor. We
Inhibitors for polyamine oxidizing enzymes, spermine oxidase (SMOX) and N1-acetylpolyamine oxidase (PAOX), were designed and evaluated for their effectiveness in a photochemically induced thrombosis (PIT) mouse model. N1-Nonyl-1,4-diaminobutane (C9-4) and N1-tridecyl-1,4-diaminobutane (C13-4)
We found previously that increased levels of polyamine oxidase (PAO) [acetylpolyamine oxidase (AcPAO) plus spermine oxidase (SMO)], and acrolein (CH(2)CHCHO) are good markers of stroke. We then investigated whether silent brain infarction (SBI) can be detected by measuring acrolein, PAO, or other