Pàgina 1 des de 54 resultats
Suppression by delta-9-tetrahydrocannabinol (THC) of tumor necrosis factor (TNF) production by macrophages has not been reported previously. The present study evaluated the effect in vitro of THC on soluble TNF-alpha production by cultured murine peritoneal macrophages. THC at 5 or 10 micrograms/ml
Delta 9-tetrahydrocannabinol (delta 9-THC), the major psychoactive component of marijuana, has been shown to suppress macrophage soluble cytolytic activity. The purpose of this study was to determine whether delta 9-THC inhibited this function by affecting tumor necrosis factor-alpha (TNF-alpha).
Various in vitro studies have shown that delta-9-tetrahydrocannabinol (THC), the major psychoactive component of marijuana, has a variety of inhibitory effects on immune functions including effects on macrophages. The present studies have examined the mechanism of THC's effects on tumor necrosis
The natural killer cell (NK)/3polymorphonuclear neutrophil axis has recently been identified to be important in early defense against the opportunistic fungi, Candida albicans. Repression of this system is therefore likely to contribute to susceptibility to opportunistic infections. delta
Marijuana smoke shares many components in common with tobacco smoke except for the presence of Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the psychotropic compound found only in Cannibis sativa. Delta(9)-THC has been shown to potentiate smoke-induced oxidative stress and necrotic cell death. In
Synthetic cannabinoid receptor agonists activate lipoprotein lipase and the formation of lipid droplets in cultured adipocytes. Here we extend this work by examining whether Δ(9)-tetrahydrocannabinol (THC), a major plant-derived cannabinoid, increases adipocyte size in vivo. Further, possibly as a
NMDA causes oxidative stress in neurons, and produces cell death involving elements of both necrosis and apoptosis. To examine the neuroprotective mechanism of Delta9-tetrahydrocannabinol (THC) in NMDA-induced death of AF5 cells, we measured reactive oxygen species (ROS) formation after exposure to
Lipopolysaccharide (LPS, 100 ng/mL)-induced tyrosine phosphorylation of four proteins (p41, p42, p77, and p82) in mouse resident peritoneal macrophages was observed using a monoclonal anti-phosphotyrosine antibody PY20 immunoblotting method. Macrophages pretreated for 3 hr with 1 microgram
Subcutaneous (s.c.) administration of delta-9-tetrahydrocannabinol (delta-9-THC) to rabbits produced dose-related cumulative toxicity. Five groups of three New Zealand albino rabbits each received 28 daily treatments with isotonic saline, sesame oil of 15.9, 45.0 or 153.4 mg/kg/day of delta-9-THC
The major psychoactive component of marijuana, delta 9-tetrahydrocannabinol (THC), has been shown to suppress the functions of various immune cells. However, the relationship of these findings to THC-induced suppression of host resistance to infection has not been firmly established. In this report,
Delta 9-Tetrahydrocannabinol (THC) injection modulates immune cell function, but the significance of this in altering host resistance to infection is not understood. In addition, exposure to THC and other drugs of abuse during infection is associated with an acute mortality syndrome. We examined the
Cannabinoid Δ9-tetrahydrocannabinol (THC) is effective in treating osteoarthritis (OA), and the mechanism, however, is still elusive. Activation of cannabinoid receptor CB2 reduces inflammation; whether the activation CB2 is involved in THC-induced therapeutic action for OA is still unknown.
Natural killer (NK) and natural cytotoxic (NC) activities are spontaneously generated against certain tumors in vitro and their contribution to tumor immunity is being extensively investigated. We report here that the interleukin-2 (IL-2)-dependent murine cell line, NKB61A2, which we recently found
We have previously observed that delta 9-tetrahydrocannabinol (THC), the major psychoactive component of marijuana, increased supernatant interleukin-1 (IL-1) bioactivity in cultures of mouse resident peritoneal macrophages stimulated with lipopolysaccharide (LPS). In this study, experiments were