10 Výsledek
α-carotene is one of the important components of pro-vitamin A, which is able to be converted into vitamin A in the human body. One maize (Zea mays L.) ortholog of carotenoid hydroxylases in Arabidopsis thaliana, ZmcrtRB3, was cloned and its role in carotenoid hydrolyzations was addressed. ZmcrtRB3
The typically intense carotenoid accumulation in cultivated orange-rooted carrots (Daucus carota) is determined by a high protein abundance of the rate-limiting enzyme for carotenoid biosynthesis, phytoene synthase (PSY), as compared with white-rooted cultivars. However, in contrast to other
The first dedicated step in plant xanthophyll biosynthesis is carotenoid hydroxylation. In Arabidopsis thaliana, this reaction is performed by both heme (LUT1 and LUT5) and non-heme (CHY1 and CHY2) hydroxylases. No mutant completely abolishing alpha- or beta-carotene hydroxylation has been described
Plants protect themselves from excess absorbed light energy through thermal dissipation, which is measured as nonphotochemical quenching of chlorophyll fluorescence (NPQ). The major component of NPQ, qE, is induced by high transthylakoid DeltapH in excess light and depends on the xanthophyll cycle,
Carotenoids represent a group of widely distributed pigments derived from the general isoprenoid biosynthetic pathway that possess diverse functions in plant primary and secondary metabolism. Modification of alpha- and beta-carotene backbones depends in part on ring hydroxylation. Two
Linseed flax (Linum usitatissimum L.) is an industrially important oil crop, which includes large amounts of alpha-linolenic acid (18:3) and lignan in its seed oil. We report here the metabolic engineering of flax plants to increase carotenoid amount in seeds. Agrobacterium-mediated transformation
Vitamin A deficiency is one of the most prevalent nutritional deficiencies worldwide. Sorghum [Sorghum bicolor L. (Moench)] is a major cereal crop consumed by millions of people in regions with high vitamin A deficiency. We quantified carotenoid concentrations in a diverse sorghum panel using
The xanthophylls are oxygenated carotenoids and are important structural components of the photosynthetic apparatus. Xanthophylls contribute to the assembly and stability of light-harvesting complex apoproteins (LHC) and contribute to photoprotection via non-photochemical quenching of chlorophyll
Carotenoid turnover was investigated in mature leaves of Arabidopsis (Arabidopsis thaliana) by 14CO2 pulse-chase labeling under control-light (CL; 130 micromol photons m(-2) s(-1)) and high-light (HL; 1,000 micromol photons m(-2) s(-1)) conditions. Following a 30-min 14CO2 administration,
To gain insight into the evolution of xanthophyll synthesis in Arabidopsis thaliana, we analyzed two pairs of duplicated carotenoid hydroxylase enzymes in Arabidopsis thaliana: the cytochrome P450 enzymes CYP97A3 and CYP97C1, and non-heme di-iron enzymes, BCH1 and BCH2. Hydroxylated carotenes did