11 Výsledek
The metabolism of myo-inositol-2-(14)C, d-glucuronate-1-(14)C, d-glucuronate-6-(14)C, and l-methionine-methyl-(14)C to cell wall polysaccharides was investigated in excised root-tips of 3 day old Zea mays seedlings. From myo-inositol, about one-half of incorporated label was recovered in ethanol
Streptomyces rubiginosus D-xylose isomerase catalyzes the reversible isomerization of D-glucose to D-fructose. The isomerization reaction is maximized in the alkaline region of pH 8.5-8.8. The amino acid residues around two active site histidines (His-54 and His-220) and on the surface of the enzyme
Extracts of immature kernels of Zea mays L. catalyzed the synthesis of indol-3-yl-acetyl-myo-inositol arabinoside from indol-3-yl-acetyl-myo-inositol and UDP-[U-(14)C]xylose. The product contained radioactivity which upon hydrolysis with trifluoroacetic acid cochromatographed with arabinose and not
D-Xylose isomerase is a heat-stable enzyme which isomerizes D-xylose into D-xylulose. D-Xylose isomerase from various species also isomerizes D-glucose into D-fructose. This enzyme is used in industry for the production of high-fructose corn syrup. The enzyme is specific for both, xylose and
D-Xylose isomerase (XI) is a heat-stable homotetrameric enzyme used in industry for the production of high-fructose corn syrups by isomerization of D-glucose into D-fructose. To carry out biochemical and structural studies of this enzyme and of its engineered variants, a rapid and convenient method
UDPGDH (UDP-D-glucose dehydrogenase) oxidizes UDP-Glc (UDP-D-glucose) to UDP-GlcA (UDP-D-glucuronate), the precursor of UDP-D-xylose and UDP-L-arabinose, major cell wall polysaccharide precursors. Maize (Zea mays L.) has at least two putative UDPGDH genes (A and B), according to sequence similarity
Glucose isomerase is an enzyme widely used in food industry for producing high-fructose corn syrup. Many microbes, including Bacillus megaterium, have been found to be able to produce glucose isomerase. However, the number of studies of glucose isomerase production from Bacillus megaterium is
Glucose isomerase (GI) (D-xylose ketol-isomerase; EC. 5.3.1.5) catalyzes the reversible isomerization of D-glucose and D-xylose to D-fructose and D-xylulose, respectively. The enzyme has the largest market in the food industry because of its application in the production of high-fructose corn syrup
In 1985 the vernacular name Enteric Group 90 was coined for a small group of strains that had been referred to our laboratory as probable strains of Salmonella but did not agglutinate in Salmonella typing antisera. By DNA-DNA hybridization (hydroxyapatite method, 32P), seven strains of Enteric Group
The name Vibrio hollisae (synonym = Special Bacteriology group EF-13) is proposed for a new group of 16 strains that occurred in stool cultures of patients with diarrhea. V. hollisae is a small gram-negative rod, which is motile with a single polar flagellum. No lateral or peritrichous flagella were
Glucose isomerase (GI) catalyzes the reversible enzymatic isomerization of d-glucose and d-xylose to d-fructose and d-xylulose, respectively. This is one of the most important enzymes in the production of high-fructose corn syrup (HFCS) and biofuel. We recently determined the crystal structure of GI