Strana 1 z 51 Výsledek
Flavonol 3-O-galactosyltransferase (F3GalTase) is a pollen-specific enzyme which glycosylates the flavonols required for germination in petunia. The highly restricted tissue-specific expression and substrate usage make F3GalTase unique among all other flavonoid glycosyltransferases (GTs) described
Flavonols are important copigments that affect flower petal coloration. Flavonol synthase (FLS) catalyzes the conversion of dihydroflavonols to flavonols. In this study, we identified a FLS gene, MaFLS, expressed in petals of the ornamental monocot Muscari aucheri (grape hyacinth) and
Flavonol synthase (FLS) belongs to the 2-oxoglutarate-dependent dioxygenase (2-ODD) superfamily. We isolated OsFLS from the rice ( Oryza sativa) cultivar "Ilmi" OsFLS includes highly conserved 2-ODD-specific motifs and FLS-specific regions. Recombinant OsFLS exhibited both FLS and
The exine of angiosperm pollen grains is usually covered by a complex mix of metabolites including pollen-specific hydroxycinnamic acid amides (HCAAs) and flavonoid glycosides. Whereas the biosynthetic pathways resulting in the formation of HCAAs and flavonol glycosides have been characterized, it
The onion (Allium cepa L.) flavonol synthase (AcFLS-HRB) gene, encoding an enzyme responsible for flavonol biosynthesis in yellow onion, was recently identified and enzymatically characterized. Here, we performed an in vivo feeding assay involving bacterial expression of
Phosphorus (P) is an essential macronutrient for plant growth and development. The concentration of flavonol, a natural plant antioxidant, is closely related to phosphorus nutritional status. However, the regulatory networks of flavonol biosynthesis under low Pi stress are still unclear. In this
The HD-ZIP Ⅳ transcription factors have been identified and functional characterized in many plant species. However, no tobacco HD-ZIP IV gene has been isolated, and it is not yet known whether HD-ZIP IV genes are involved in controlling flavonols accumulation in plants. Here, we cloned a HD ZIP
The flavonoids metabolic pathway plays central roles in floral coloration, in which anthocyanins and flavonols are derived from common precursors, dihydroflavonols. Flavonol synthase (FLS) catalyses dihydroflavonols into flavonols, which presents a key branch of anthocyanins biosynthesis. The yellow
Trichomes excrete secondary metabolites that may alter the chemical composition of the leaf surface, reducing damage caused by herbivores, pathogens and abiotic stresses. We examined the surface exudates produced by Nicotiana attenuata Torr. Ex Wats., a plant known to contain and secrete a number of
The plant metabolite montbretin A (MbA) and its precursor mini-MbA are potential new drugs for treating type 2 diabetes. These complex acylated flavonol glycosides only occur in small amounts in the corms of the ornamental plant montbretia (Crocosmia × crocosmiiflora). Our goal is to
Flavonoids are synthesized by phenylpropanoid pathway. They are known to participate in large number of physiological and biochemical processes in plants. Parthenocarpy and male sterility has earlier been reported by silencing chalcone synthase (CHS) encoding gene. Silencing of CHS has blocked the
The effect of anther-derived substances on pollen function was studied using pollen produced by in vitro culture of immature pollen of tobacco (Nicotiana tabacum L.) and petunia (Petunia hybrida). Addition of conditioned medium consisting of diffusates from in situ matured pollen strongly increased
Flavonols as plant secondary metabolites with vital roles in plant development and defense against UV light, have been demonstrated to be the main bioactive components (BCs) in the genus Epimedium plants, several species of which are used as materials for Herba Epimedii, an important traditional
Glycosylation and deglycosylation are impressive mechanisms that allow plants to regulate the biological activity of an array of secondary metabolites. Although glycosylation improves solubility and renders the metabolites suitable for transport and sequestration, deglycosylation activates them to
Biochemical, transgenic, and genetic complementation data demonstrate that three glutathione S-transferases are involved in the storage of anthocyanins, flavonols, and proanthocyanins in plant cells. Flavonoids are compounds in tea (Camellia sinensis) that confer the characteristic astringent taste