Strana 1 z 17 Výsledek
Group A Streptococcus (GAS; Streptococcus pyogenes) causes a wide range of infections, including pharyngitis, impetigo, and necrotizing fasciitis, and results in over half a million deaths annually. GAS ScpC (SpyCEP), a 180-kDa surface-exposed, subtilisin-like serine protease, acts as an essential
Bullous impetigo due to Staphylococcus aureus is one of the most common bacterial infections of man, and its generalized form, staphylococcal scalded skin syndrome (SSSS), is a frequent manifestation of staphylococcal epidemics in neonatal nurseries. Both diseases are mediated by exfoliative toxins
Exfoliative toxin A, produced by Staphylococcus aureus, causes blisters in bullous impetigo and its more generalized form, staphylococcal scalded-skin syndrome. The toxin shows exquisite specificity in causing loss of cell adhesion only in the superficial epidermis. Although exfoliative toxin A has
The secreted cysteine proteinase SpeB is an important virulence factor of group A streptococci (GAS), whereby SpeB activity varies widely among strains. To establish the degree to which SpeB activity correlates with disease, GAS organisms were recovered from patients with pharyngitis, impetigo,
Streptococcus pyogenes is responsible for a wide variety of cutaneous infections ranging from superficial impetigo to fulminant invasive necrotizing fasciitis. Dysfunction of desmosomes is associated with the pathogenesis of cutaneous diseases. We identified streptococcal pyrogenic exotoxin B (SpeB)
Group A Streptococcus is a common pathogen that causes pharyngitis, impetigo, myositis, and lethal streptococcal toxic shock syndrome. Streptococcal pyrogenic exotoxin B (SPE B) is strongly associated with the severity of disease. SPE B is a cysteine protease and matures itself by autocatalysis. We
Many children suffer from the bacterial skin diseases bullous impetigo and staphylococcal scalded skin syndrome (SSSS). Staphylococcus aureus, which produces exfoliative toxins (ETs), causes these diseases. Recently, it was proven that ETs cleave the cell adhesion molecule desmoglein (Dsg) 1, which
Primary infection of the human host by group A streptococci (GAS) most often involves either the epidermis of the skin or the oropharyngeal mucosa. A humanized in vivo model for impetigo was used to investigate the basis for host tissue tropism among GAS. Disruption of the speB gene (encoding for a
Desmoglein 1 (Dsg1) is a desmosomal cadherin that is essential to epidermal integrity. In the blistering diseases bullous impetigo and staphylococcal scalded-skin syndrome, pathogenesis depends on cleavage of Dsg1 by a bacterial protease, exfoliative toxin A, which removes residues 1 to 381 of the
C5a peptidase, also called SCPA (surface-bound C5a peptidase), is a surface-bound protein on group A streptococci (GAS), etiologic agents for a variety of human diseases including pharyngitis, impetigo, toxic shock, and necrotizing fasciitis, as well as the postinfection sequelae rheumatic fever and
Streptococcus pyogenes is an important bacterial pathogen that colonizes the throat and skin of human beings and causes a wide variety of diseases ranging from mild infections like pharyngitis, tonsillitis and impetigo to severe invasive infections such streptococcal toxic shock syndrome,
Desmosomes are intercellular adhesive junctions of epithelial cells that contain two major transmembrane components, the desmogleins (Dsg) and desmocollins (Dsc), which are cadherin-type cell-cell adhesion molecules and are anchored to intermediate filaments of keratin through interactions with
Group A streptococcus (GAS) is responsible for a wide range of diseases ranging from superficial infections, such as pharyngitis and impetigo, to life-threatening diseases, such as toxic shock syndrome and acute rheumatic fever (ARF). GAS pili are hair-like extensions protruding from the cell
BACKGROUND
The microscopic and microbial features of the spreading epidermal collarettes of canine exfoliative superficial pyodermas are poorly characterized.
OBJECTIVE
To characterize the clinical, cytological, microbial and histopathological features of epidermal collarettes in five
OBJECTIVE
Staphylococcal epidermolysins are the major causative toxins of bullous impetigo and staphylococcal scalded skin syndrome. This disease is characterized by the splitting of the epidermis between two cell layers resulting in exfoliation. It predominantly affects newborn babies and exposes