Strana 1 z 268 Výsledek
The amounts and rates of metabolic turnover of the indolylic compounds in germinating kernels of sweet corn were determined. Knowledge of pool size and rate of pool turnover has permitted: (a) identification of indole-3-acetyl-myo-inositol as the major chemical form for transport of indole-3-acetic
Isolated, 2.5-mm-long coleoptile tips of Zea mays L. cv. Anjou 210 were analyzed for diffusible and tissue-extractable indole-3-acetic acid (IAA) in comparison with the level of base-labile conjugates at various times after excision. The results indicate that base-labile conjugates of IAA do not
Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function
Either 5-[3H]indole-3-acetic acid (IAA) or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm of kernels of dark-grown Zea mays seedlings. The distribution of total radioactivity, radiolabeled indole-3-acetic acid, and radiolabeled ester conjugated indole-3-acetic acid, in the shoots
A Gram-positive, aerobic, motile, rod-shaped bacterium, designated strain C9(T), was isolated from surface sterilised corn roots (Zea mays cv. Xinken-5) and found to be able to produce indole-3-acetic acid. A polyphasic taxonomic study was carried out to determine the status of strain C9(T). The
The structures and the concentrations of all of the indolylic compounds that occur in the endosperm of the seeds of corn (Zea mays L.) are known. Thus, it should be possible to determine which, if any, of the indolylic compounds of the endosperm can be transported to the seedling in significant
Radiolabeled oxindole-3-acetic acid was metabolized by roots, shoots, and caryopses of dark grown Zea mays seedlings to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glycopyranoside with the simpler name of 7-hydroxyoxindole-3-acetic acid-glucoside. This compound was also formed
Kernels of Zea mays on an intact plant accumulate indole-3-acetic acid (IAA) at the rate of 190 ng g-1 fresh weight h-1. Of the IAA synthesized, 97% is in the esterified form and less than 3% remains as the free acid. The site of biosynthesis of the IAA, whether synthesized in the leaf and
Indole-3-acetyl-myo-inositol occurs in both the kernel and vegetative shoot of germinating Zea mays seedlings. The effect of a gravitational stimulus on the transport of [3H]-5-indole-3-acetyl-myo-inositol and [U-14C]-D-glucose from the kernel to the seedling shoot was studied. Both labeled glucose
The pool of amide-linked indole-3-acetic acid (amide IAA) in the shoot of growing etiolated seedlings of Zea mays increases between the 3rd and 5th day of germination to equal the amount of free IAA and two-thirds the amount of ester IAA. Deseeding the germinant changes the pool size of free and
A method using deuterium oxide (D(2)O) as a tracer was used to study indole-3-acetic acid (IAA) metabolism in Zea mays seedlings. Seeds were imbibed and grown for 4 days in 30% D(2)O in the dark. IAA was then isolated from roots and shoots and analyzed for deuterium content by mass spectrometry. We
Indole-3-acetic acid-1'-(14)C (IAA-(14)C) and tryptophan-1-(14)C injected in small amounts into cotyledons of Phaseolus coccineus L. seedlings were found to be translocated acropetally into the epicotyls and young shoots. Similarly IAA-(14)C was translocated acropetally into coleoptiles of Zea mays
We wished to determine the effect of endosperm removal on the amounts of free and esterified indole-3-acetic acid (IAA) in young Zea mays seedlings. The increases of IAA derived from endosperm and from biosynthesis, but without correction for catabolic losses, were 0.9 picomole of free IAA per shoot
Indole-3-acetyl-myo-inositol esters have been demonstrated to be endogenous components of etiolated Zea mays shoots tissue. This was accomplished by comparison of the putative compounds with authentic, synthetic esters. The properties compared were liquid and gas-liquid chromatographic retention
The purification of 6-O(4-O)-indole-3-ylacetyl-beta-D-glucose (IAGlc) hydrolase from immature kernels of maize (Zea mays) was undertaken to separate this enzyme from 1-O-IAGlc hydrolase and beta-glucosidase. Partially purified 6-O(4-O)-IAGlc hydrolase was found to be the specific enzyme catalyzing