15 Výsledek
During arbuscular mycorrhizal (AM) symbiosis, the plant gains access to phosphate (Pi) and nitrogen delivered by its fungal symbiont. Transfer of mineral nutrients occurs at the interface between branched hyphae called arbuscules and root cortical cells. In Medicago truncatula, a Pi transporter,
Plants acquire essential mineral nutrients such as phosphorus (P) and nitrogen (N) directly from the soil, but the majority of the vascular plants also gain access to these mineral nutrients through endosymbiotic associations with arbuscular mycorrhizal (AM) fungi. In AM symbiosis, the fungi deliver
Plant proteases and protease inhibitors are involved in plant developmental processes including those involving interactions with microbes. Here we show that a tandem between a Kunitz protease inhibitor (KPI106) and a serine carboxypeptidase (SCP1) controls arbuscular mycorrhiza development in the
Medicago sativa var. Gabes is a perennial glycophyte that develops new shoots even in high salinity (150 mM NaCl). In the upper exporting leaves, K(+) is high and Na(+) is low by comparison with the lower leaves, where Na(+) accumulation induces chlorosis after 4 weeks of NaCl treatment. By
Whether callose deposition is the cause or result of ovule sterility in Medicago sativa remains controversial, because it is unclear when and where changes in callose deposition and dissolution occur during fertile and sterile embryo sac formation. Here, alfalfa spontaneous multi-pistil mutant (mp1)
We investigated the effects of Medicago sativa supplementation on the lipid profiles and antioxidant capacities of ovariectomized mice. The study was performed on white Swiss female mice that were divided into five groups: control, treated with Medicago sativa (0.75 g/kg/day),
In the arbuscular mycorrhizal symbiosis, the fungal symbiont colonizes root cortical cells, where it establishes differentiated hyphae called arbuscules. As each arbuscule develops, the cortical cell undergoes a transient reorganization and envelops the arbuscule in a novel symbiosis-specific
Arabidopsis and Medicago truncatula represent sister clades within the dicot subclass Rosidae. We used genetic map-based and bacterial artificial chromosome sequence-based approaches to estimate the level of synteny between the genomes of these model plant species. Mapping of 82 tentative
Male sterility is an important tool for plant breeding and hybrid seed production. Male-sterile mutants are largely due to an abnormal development of either the sporophytic or gametophytic anther tissues. Tapetum, a key sporophytic tissue, provides nutrients for pollen development, and its delayed
Plants use a variety of small peptides for cell to cell communication during growth and development. Leguminous plants are characterized by their ability to develop nitrogen-fixing nodules via an interaction with symbiotic bacteria. During nodule organogenesis, several so-called nodulin genes are
Different symbiotic and pathogenic plant-microbe interactions involve the production of cysteine-rich antimicrobial defensins. In Medicago truncatula, the expression of four MtDefMd genes, encoding arbuscular mycorrhiza-dependent defensins containing an N-terminal signal peptide and exhibiting some
Medicago truncatula is widely used for analyses of arbuscular mycorrhizal (AM) symbiosis and nodulation. To complement the genetic and genomic resources that exist for this species, we generated fluorescent protein fusions that label the nucleus, endoplasmic reticulum, Golgi apparatus, trans-Golgi
This research focuses on screening and evaluation of bioactive constituents in plants through pharmacological assays. In present study, we evaluated phytochemicals, cytotoxic activity, in vivo effect of M. monantha against CCl4 induced toxicity in cardiac and renal tissues and its aphrodisiac
Comparative studies help shed light on how the huge diversity in plant forms found in nature has been produced. We use legume species to study developmental differences in inflorescence architecture and flower ontogeny with classical models such as Arabidopsis thaliana or Antirrhinum majus. Whereas
Tailoring carotenoids by plant carotenoid cleavage dioxygenases (CCDs) generates various bioactive apocarotenoids. Recombinant CCD1 has been shown to catalyze symmetrical cleavage of C(40) carotenoid substrates at 9,10 and 9',10' positions. The actual substrate(s) of the enzyme in planta, however,