6 Výsledek
Objectives Repeated exposure to anoxic stress damages the brain through cortisol-mediated increases in oxidative stress and cellular-antioxidants depletion. Thus, compounds with antioxidant property might confer protection against anoxic stress-induced brain injuries. In this study, we further
As waterlogging and successive events severely influence growth and development of economically important plants, we attempted to characterize the role of a waterlogging-responsive group I (A-6) ethylene response factor (MaRAP2-4) from Mentha arvensis. Waterlogging, ethylene and methyl jasmonate
Dehydrins (DHNs), which are stress-related proteins, are important for plant survival under various abiotic and biotic stresses. To elucidate the regulatory mechanisms of wheat-derived DHNs under these stresses, we characterized the DHN wzy2 promoter of the wheat cultivar Zhengyin 1 and studied its
We studied the expression of three promoter 5' deletion constructs (-218, -599, and -1312) of the LEA (late embryogenesis abundant)-class gene Dc3 fused to beta-glucuronidase (GUS), where each construct value refers to the number of base pairs upstream of the transcription start site at which the
Submergence induces hypoxia in plants; exposure to oxygen following submergence, termed reoxygenation, produces a burst of reactive oxygen species. The mechanisms of hypoxia sensing and signaling in plants have been well studied, but how plants respond to reoxygenation remains unclear. Here, we show
The physiological disorder hyperhydricity occurs frequently in tissue culture and causes several morphological abnormalities such as thick, brittle, curled, and translucent leaves. It is well known that hyperhydric shoots are characterized by a high water content, but how this is related to the