Strana 1 z 640 Výsledek
The plant hormone abscisic acid (ABA) controls numerous physiological traits: dormancy and germination of seeds, senescence and resistance to abiotic stresses. In order to get more insight into the role of protein tyrosine phosphatase (PTP) in ABA signalling, we obtained eight homozygous T-DNA
• This study reports that Arabidopsis thaliana protein serine/threonine phosphatase 5 (AtPP5) plays a pivotal role in heat stress resistance. A high-molecular-weight (HMW) form of AtPP5 was isolated from heat-treated A. thaliana suspension cells. AtPP5 performs multiple functions, acting as a
Protein phosphatases (PPs) counteract kinases in reversible phosphorylation events during numerous signal transduction pathways in eukaryotes. PP2Cs, one of the four major classes of the serine/threonine-specific PP family, are greatly expanded in plants. Thus, PP2Cs are thought to play a specific
Organellar reactive oxygen species (ROS) signalling is a key mechanism that promotes the onset of defensive measures in stress-exposed plants. The underlying molecular mechanisms and feedback regulation loops, however, still remain poorly understood. Our previous work has shown that a specific
Transposable elements (TEs) are DNA repeats that must remain silenced to ensure cell integrity. Several epigenetic pathways including DNA methylation and histone modifications are involved in the silencing of TEs, and in the regulation of gene expression. In Arabidopsis thaliana, the TE-derived
Despite the importance of riboflavin as the direct precursor of the cofactors flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), the physiologically relevant catalyst dephosphorylating the riboflavin biosynthesis pathway intermediate 5-amino-6-ribitylamino-2,4(1H,3H) pyrimidinedione
Two cDNA species encoding sequences homologous to the 65 kDa regulatory subunit (PR 65) of protein phosphatase 2A (PP2A) have been isolated from an Arabidopsis thaliana cDNA library. These were designated pDF1 and pDF2. pDF1 is 1795 bp long and by comparison with the human and porcine PP2A
Two DNA fragments, AP-1 and AP-2, encoding amino acid sequences closely related to Ser/Thr protein phosphatases were amplified from Arabidopsis thaliana genomic DNA. Fragment AP-1 was used to screen A. thaliana cDNA libraries and several positive clones were isolated. Clones EP8a and EP14a were
The Arabidopsis thaliana type 1 protein phosphatase (PP1) catalytic subunit was released from its endogenous regulatory subunits by ethanol precipitation and purified by anion exchange and microcystin affinity chromatography. The enzyme was identified by MALDI-TOF mass spectrometry from a tryptic
VirE2-INTERACTING PROTEIN1 (VIP1) is a basic leucine zipper protein in Arabidopsis thaliana. VIP1 changes its subcellular localization from the cytoplasm to the nucleus when cells are exposed to mechanical or hypo-osmotic stress. The nuclear localization of VIP1 is inhibited either by
The plant Arabidopsis thaliana contains five isoforms of the catalytic subunit of protein phosphatase 2A (PP2A) that can be grouped into two families, one composed by isoforms PP2A-1, -2 and -5 and the other composed by isoforms PP2A-3 and PP2A-4. An Arabidopsis genomic library was screened and
We have recently reported the existence of multiple isoforms of the catalytic subunit of protein phosphatase 2A (PP2A) in Arabidopsis thaliana and the molecular cloning of cDNAs encoding three of these proteins (PP2A-1, PP2A-2, PP2A-3). The reported cDNA encoding PP2A-3 was truncated at the 5'
Mutations at the ABI1 (abscisic acid insensitive 1) locus of the plant Arabidopsis thaliana cause a reduction in sensitivity to the plant hormone abscisic acid. The sequence of ABI1 predicts a protein composed of an N-terminal domain that contains motifs for an EF-hand Ca(2+)-binding site, and a
Controlled protein dephosphorylation by protein phosphatase 2A (PP2A) regulates diverse signaling events in plants. Recently, we showed that a specific B’γ regulatory subunit of PP2A mediates basal repression of immune reactions in Arabidopsis thaliana. Knock-down pp2a-b’γ mutants display
A close examination of the protein sequence encoded by the Arabidopsis thaliana gene F21M12.26 reveals the gene product to be a phosphomonoesterase, acid optimum (EC 3.1.3.2). A subclass of this broad acid phosphatase is also known as 'histidine acid phosphatase. ' This is the first sequence-based