7 Výsledek
Patients with non-ketotic hyperglycinemia (NKH) present severe neurological symptoms and brain abnormalities involving cerebellum. Although the pathomechanisms underlying the cerebellum damage have not been studied, high tissue levels of glycine (GLY), the biochemical hallmark of this disorder have
Propionic acidemia (PA), caused by a deficiency of the mitochondrial biotin dependent enzyme propionyl-CoA carboxylase (PCC) is one of the most frequent organic acidurias in humans. Most PA patients present in the neonatal period with metabolic acidosis and hyperammonemia, developing different
Methylmalonic acidemia (MMA) and propionic acidemia (PA) are related disorders of mitochondrial propionate metabolism, caused by defects in methylmalonyl-CoA mutase (MUT) and propionyl-CoA carboxylase (PCC), respectively. These biochemical defects lead to a complex cascade of Methylmalonic acidemia and propionic acidemia are organic acidemias biochemically characterized by predominant tissue accumulation of methylmalonic acid (MMA) and propionic acid (PA), respectively. Affected patients present predominantly neurological symptoms, whose pathogenesis is not yet fully
Propionic acidemia (PA) is a classical inborn error of metabolism with high morbidity that results from the inability of the propionyl-CoA carboxylase (PCC) enzyme to convert propionyl-CoA to methylmalonyl-CoA. PA is inherited in an autosomal recessive fashion due to functional loss of both alleles
Non-ketotic hyperglycinemia (NKH) is a severe neurological disorder caused by defects in glycine (GLY) catabolism and characterized by a high cerebrospinal fluid/plasma GLY ratio. Treatment is often ineffective and limited to the control of symptoms and detoxification of GLY. In the present work, we
Hyperammonemia is a common finding in children with methylmalonic acidemia and propionic acidemia, but its contribution to the development of the neurological symptoms in the affected patients is poorly known. Considering that methylmalonic acid (MMA) and propionic acid (PA) predominantly accumulate