Seite 1 von 42 Ergebnisse
The AsPPD1 gene from Astragalus sinicus encodes a purple acid phosphatase. To address the functions of AsPPD1 in legume-rhizobium symbiosis, its expression patterns, enzyme activity, subcellular localization, and phenotypes associated with its over-expression and RNA interference (RNAi) were
OBJECTIVE
To investigate the immunomodulating activity of astragalosides, the active compounds from a traditional tonic herb Astragalus membranaceus Bge, and to explore the molecular mechanisms underlying the actions, focusing on CD45 protein tyrosine phosphatase (CD45 PTPase), which plays a
A glasshouse experiment was carried out to study the effect of mycorrhizal formation by Gigaspora margarita, Glomus intraradices or Acaulospora laevis on plant growth and lanthanum (La) uptake of Astragalus sinicus L. in soils spiked with La at five levels (0, 1, 5, 10 and 20 mg kg(-1)). La
OBJECTIVE
To investigate the effect of Astragalus membranaceus (APS) on the proliferation, osteogenic capacity and structure of periodontal ligament cells (PDLCs) in vitro.
METHODS
PDLCs were cultured in vitro with APS of 0.08, 0.1, 0.2, 0.4 mg x mL(-1). Methyl thiazolyl tetrazolium (MTr), alkaline
This study aimed to explore the effects of Astragalus membranaceus polysaccharide (AMP) on the growth and innate immunity of crucian carp (Carassius auratus). Crucian carps were randomly divided into a control group (fed with basal diet) and three AMP groups (received basal diet supplemented with
A study was carried out to examine the effects of forced running exercise in the growing stage in male ICR mice and of Astragalus membranaceus (As) on their immune functions. The mice were divided at 4 weeks of age into 4 groups. The first group of mice received forced running exercise (E-group),
Three arbuscular mycorrhizal (AM) fungi (Glomus mosseae, Glomus claroideum, and Glomus intraradices) were compared for their root colonizing ability and activity in the root of Astragalus sinicus L. under salt-stressed soil conditions. Mycorrhizal formation, activity of fungal succinate
The influence of cadmium (Cd) on the root colonization of Astragalus by two arbuscular mycorrhizal fungi (AMF) was investigated. Astragalus sinicus L. grown in the soil in the presence of four levels of Cd was inoculated individually with Glomus mosseae, Glomus intraradices, or by a mixed inoculum
OBJECTIVE
To examine the effects of Astragalus polysaccharide (APS), a component of an aqueous extract of Astragalus membranaceus roots, on protein tyrosine phosphatase 1B (PTP1B), a negative regulator of insulin-receptor (IR) signal transduction, and its potential role in the amelioration of
Our previous studies found that Astragalus polysaccharide (APS) exerts insulin-sensitizing and hypoglycemic activities in type 2 diabetic (T2DM) rats. The present study was designed to further confirm the hypoglycemic effect of APS and to investigate its possible mechanism underlying the improvement
Residue management in cropping systems is useful to improve soil quality. However, the studies on the effects of residue management on the enzyme activities and microbial community of soils in South China are few. Therefore, the effects of incorporating winter cover crop residue with a
The present study aimed to evaluate the potential synergistic and protective effects of ALM16, a mixture of Astragalus membranaceus (AM) and Lithospermum erythrorhizon (LE) extract in a ratio of 7 : 3, against hepatic steatosis in high fat diet (HFD)-induced nonalcoholic fatty liver
Astragaloside IV (AS-IV), a natural herbal compound from Astragalus membranaceus, has inhibitory effects on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis, and RANKL signal helps to regulate odontoblast differentiation. However, whether and how AS-IV Jasin-hwan-gagambang (BHH10), a modified prescription of Jasin-hwan, contains Astragalus membranaceus, Cinnamomum cassia, and Phellodendron amurense, and it has been traditionally used to treat osteoporosis and other inflammatory diseases. In this study, we systematically investigated the protective
Neighbouring plants can affect plant growth through altering root morphological and physiological traits, but how exactly root systems respond to neighbouring plants with varied density, determining nutrient uptake and shoot growth is poorly understood. In a pot-based experiment, rapeseed was grown