Seite 1 von 20 Ergebnisse
Synthetic cannabinoid receptor agonists activate lipoprotein lipase and the formation of lipid droplets in cultured adipocytes. Here we extend this work by examining whether Δ(9)-tetrahydrocannabinol (THC), a major plant-derived cannabinoid, increases adipocyte size in vivo. Further, possibly as a
Endogenous signaling lipids ("endocannabinoids") functionally related to Delta(9)-tetrahydrocannabinol, the psychoactive ingredient of marijuana (Cannabis), are important biomediators and metabolic regulators critical to mammalian (patho)physiology. The growing family of endocannabinoids, along with
Fatty acids ethanolamides (FAEs) are a family of lipid mediators. A member of this family, anandamide, is an endogenous ligand for cannabinoid receptors targeted by the marijuana constituent Delta-9-tetrahydrocannabinol. Anandamide is now established as a brain endocannabinoid messenger and multiple
In the hypothalamic arcuate nucleus (ARC), proopiomelanocortin (POMC) neurons and the POMC-derived peptide α-melanocyte-stimulating hormone (α-MSH) promote satiety. POMC neurons receive orexin-A (OX-A)-expressing inputs and express both OX-A receptor type 1 (OX-1R) and cannabinoid receptor type 1
Obesity contributes to a multitude of serious health problems. Given the demonstrated role of the endogenous cannabinoid system in appetite regulation, the purpose of the present study was to evaluate structural analogs of two cannabinoids, rimonabant (cannabinoid CB(1) receptor antagonist) and
Endogenous cannabinoids are ubiquitous lipid-signaling molecules able to partially mimic the actions produced by Delta(9)-tetrahydrocannabinol, the compound responsible for most of the psychological effects of marijuana. Endocannabinoids are derived from arachidonic acid and are involved in many
An endogenous compound that binds to the same receptor sites activated by the main psychoactive constituent of marihuana, delta 9 tetrahydrocannabinol (THC), is synthetised in the brain and in several peripheral tissues. The endogenous cannabinoid was named anandamide on the basis of the sanscrit
Over past centuries, Cannabis sativa (Delta(9)-tetrahydrocannabinol being the principal active ingredient) has been used extensively for both medicinal and recreational uses, and one widely reported effect is the onset of a ravenous appetite and eating behaviour. The pharmacological properties of
Approximately one third of patients diagnosed with schizophrenia do not achieve adequate symptom control with standard antipsychotic drugs (APs). Some of these may prove responsive to clozapine, but non-response to APs remains an important clinical problem and cause of increased health care costs.
The major psychoactive constituent of Cannabis sativa, delta(9)-tetrahydrocannabinol (delta(9)-THC), and endogenous cannabinoid ligands, such as anandamide, signal through G-protein-coupled cannabinoid receptors localised to regions of the brain associated with important neurological processes.
The ability of Cannabis sativa (marijuana) to increase hunger has been noticed for centuries, although intensive research on its molecular mode of action started only after the characterization of its main psychoactive component Delta(9)-tetrahydrocannabinol in the late 1960s. Despite the public
OBJECTIVE
Cannabinoid receptor type 1 (CB1 ) antagonists have been developed for the treatment of obesity and associated risk factors. Surinabant is a high affinity CB1 antagonist in vitro. The aim of this study was to assess the magnitude of inhibition by surinabant of CNS effects and heart rate
Both agonists (e.g. Delta(9)-tetrahydrocannabinol, nabilone) and antagonists (e.g. rimonabant, taranabant) of the cannabinoid type-1 (CB(1)) receptor have been explored as therapeutic agents in diverse fields of medicine such as pain management and obesity with associated metabolic dysregulation,
CB1 antagonists such as AVE1625 are potentially useful in the treatment of obesity, smoking cessation and cognitive impairment. Proof of pharmacological action of AVE1625 in the brain can be given by antagonising the effects of delta-9-tetrahydrocannabinol (THC), a CB1/CB2 agonist. Inhibition of
Delta(9)-tetrahydrocannabinol binds cannabinoid (CB(1) and CB(2)) receptors, which are activated by endogenous compounds (endocannabinoids) and are involved in a wide range of physiopathological processes (e.g. modulation of neurotransmitter release, regulation of pain perception, and of