Seite 1 von 149 Ergebnisse
Cannabinoids have been shown to increase the release of arachadonic acid, whereas nonsteroidal anti-inflammatory drugs (NSAIDs) have been shown to decrease the analgesic effects of cannabinoids. We evaluated the antinociceptive effects of chronic administration of Delta(9)-tetrahydrocannabinol
Nonsteroidal anti-inflammatory drugs (NSAIDs), which are among the most widely used analgesics in the world, cause gastrointestinal inflammation that is potentially life-threatening. Although inhibitors of endocannabinoid catabolic enzymes protect against gastropathy in fasted NSAID-treated mice,
OBJECTIVE
Staphylococcal enterotoxin B (SEB) is a potent activator of Vβ8+T-cells resulting in the clonal expansion of ∼30% of the T-cell pool. Consequently, this leads to the release of inflammatory cytokines, toxic shock, and eventually death. In the current study, we investigated if Δ(9)
Chronic pain is the most common reason reported for using medical cannabis. The goal of this research was to determine if the two primary phytocannabinoids, THC and CBD, are effective treatments for persistent inflammatory pain. In Experiment 1, inflammation was induced in male and female rats by
Cannabis use is frequent among adolescents. Its main component, delta-9-tetrahydrocannabinol (THC), affects the immune system. We recently demonstrated that chronic exposure of adolescent mice to THC suppressed immunity immediately after treatment but that after a washout period THC induced a
THC is the main psychoactive compound found in marijuana. A number of studies over the past few decades, both in vitro and in vivo, have demonstrated that THC down-regulates the inflammatory process through various mechanisms. Similar findings have been demonstrated with CBD, the other major
Diabetes mellitus is a complex, multifactorial disorder that is attributed to pancreatic β cell dysfunction. Pancreatic β cell dysfunction results in declining utilization of glucose by peripheral tissues as kidney and it leads to nephropathy. Excessive production and accumulation of free radicals
OBJECTIVE
Plant cannabinoids, like Δ(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD), activate/desensitize thermosensitive transient receptor potential (TRP) channels of vanilloid type-1 or -2 (TRPV1 or TRPV2). We investigated whether cannabinoids also activate/desensitize two other
Cannabinoids have shown promise for the treatment of intractable pain states and may represent an alternative pharmacotherapy for pain management. A growing body of clinical evidence suggests a role for sex in pain perception and in cannabinoid response. We examined cannabinoid sensitivity and
delta 9-Tetrahydrocannabinol (THC) and cannabidiol (CBD) caused a marked stimulation of phospholipase A2 when incubated with intact human platelets that were prelabeled with [14C] arachidonate. CBD was about 1.5 x as potent as THC in the same concentration range (10 leads to 80 microM) Most of the
The endocannabinoid system (ECS) consists of two cannabinoid (CB) receptors, namely CB(1) and CB(2) receptor, and their endogenous (endocannabinoids) and exogenous (cannabinoids, e.g. delta-9-tetrahydrocannabinol (THC)) ligands which bind to these receptors. Based on studies suggesting a role of THC
This review examines evidence that delta(9)-tetrahydrocannabinol (THC) can regulate and suppress human immune responses. Leukocytes express both cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2), and levels of mRNA encoding for them are increased in peripheral blood leukocytes
We have previously reported that Δ-9-tetrahydrocannabinol (Δ9 -THC)-treated mice challenged with influenza virus A/PR/8/34 (PR8) developed increased viral hemagglutinin 1 (H1) mRNA levels and decreased monocyte and lymphocyte recruitment to the pulmonary airways when compared with mice challenged
The major psychoactive component of marijuana, Δ(9)-tetrahydrocannabinol (THC), also acts to suppress inflammatory responses. Receptors for THC, CB1, CB2, and GPR55, are differentially expressed on multiple cell types including monocytes and macrophages, which are important modulators of