13 Ergebnisse
This study evaluated the biologic activity of epicatechin gallate (ECG), a polyphenol in tea, to carcinoma HSC-2 cells and normal HGF-2 fibroblasts cells from the human oral cavity. The relative cytotoxicity of ECG, as compared to five other polyphenols in tea, was evaluated. For the HSC-2 carcinoma
We attempted to identify mouse bitter taste receptors, Tas2rs, that respond to tea catechins. Among representative tea catechins, avoidance behavior of mice to (-)-epicatechin gallate (ECg) was the strongest, followed by (-)-epigallocatechin gallate (EGCg). Therefore, we measured ECg response using
Inclusion complexes of (-)-epicatechin gallate (ECg) as well as (+)-gallocatechin gallate (GCg) and beta-cyclodextrin (beta-CD) in an aqueous solution were investigated using several NMR techniques and a computational method. ECg and EGCg formed a 1:1 complex with beta-CD, in which the A ring and a
Green tea catechins are potent antioxidant for prevention of various free radical-related diseases. Their antioxidant properties can be improved by encapsulation in cyclodextrins (CDs). Four inclusion complexes of β-CD with (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate
OBJECTIVE
In this study, we evaluated whether catechins could inhibit the expression of pro-inflammatory mediators induced by dental caries-related bacteria, Streptococci, or pathogen-associated molecular patterns (PAMPs) stimulation in human dental pulp fibroblasts (HDPF). We further determined the
The main functional components of green tea, such as epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG) and epicatechin (EC), are found to have a broad antineoplastic activity. The discovery of their targets plays an important role in revealing the antineoplastic
Phenolic compounds (PC) are linked to astringency sensation. Astringency studies typically use simple models, with pure PC and/or proteins, far from what is likely to occur in the oral cavity. Different oral models have been developed here, comprising different oral epithelia (buccal mucosa (TR146)
In this study, a capillary electrophoresis-based online immobilized enzyme microreactor was developed for evaluating the inhibitory activity of green tea catechins and tea polyphenol extracts on trypsin. The immobilized trypsin activity and other kinetic parameters were evaluated by measuring the
The cytotoxicity of (-)-catechin gallate (CG), a minor polyphenolic constituent in green tea, towards cells derived from tissues of the human oral cavity was studied. The sequence of sensitivity to CG was: immortalized epithelioid gingival S-G cells>tongue squamous carcinoma CAL27 cells>salivary
Mammalian glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of l-glutamate to 2-oxoglutarate using NAD(P)(+) as coenzyme. Unlike its counterparts from other animal kingdoms, mammalian GDH is regulated by a host of ligands. The recently
The molecular basis for the antiviral inhibitory properties of three catechins epigallocatechin gallate, epicatechin gallate and catechin-5-gallate derived from green tea was assessed in terms of their ability to interact with influenza neuraminidase. This was investigated using a molecular based
The dental caries inhibiting effect of the extract from Japanese green tea, one of the most popular drinks in Japan, was studied both in vitro and in vivo. The crude tea polyphenolic compounds (designated Sunphenon) from the leaf of Camellia sinensis were found to effectively inhibit the attachment
Extracts of leaves from the tea plant Camellia sinensis contain polyphenolic components with activity against a wide spectrum of microbes. Studies conducted over the last 20 years have shown that the green tea polyphenolic catechins, in particular (-)-epigallocatechin gallate (EGCg) and