Seite 1 von 57 Ergebnisse
A basic, galactose-rich style glycoprotein (GaRSGP) encoded by a previously characterized style-specific cDNA (NaPRP4) has been isolated from the styles of Nicotiana alata and structurally characterized. The glycoprotein is associated with cell walls in the transmitting tract and is composed of
We found a galactose-rich basic glycoprotein (GBGP) in the cell walls of cultured tobacco (Nicotiana tabacum) cells. GBGP and extensin were isolated as the major components of basic, salt-extracted cell wall glycoproteins. GBGP and extensin were separated by gel filtration in 6 M guanidine
L-Galactose-1-phosphate phosphatase (GPPase) is an enzyme involved in ascorbate biosynthesis in higher plants. We isolated a cDNA encoding GPPase from tobacco, and named it NtGPPase. The putative amino acid sequence of NtGPPase contained inositol monophosphatase motifs and metal binding sites.
d-Galactose has been shown to have toxic and growth inhibitory effects in plants. When applied at levels of 50 millimolar to tobacco (Nicotiana tabacum L. cv Xanthi) leaf discs galactose caused a rapid increase in ethylene production during the first 2 days of incubation, followed by a rapid return
Ascorbate is a powerful antioxidant in plants and an essential micronutrient for humans. The GDP-L-galactose phosphorylase (GGP) gene encodes the rate-limiting enzyme of the L-galactose pathway-the dominant ascorbate biosynthetic pathway in plants-and is a promising gene candidate for A high proportion of hybridomas, obtained from mice immunized with style extracts prepared from mature flowers of an ornamental tobacco, Nicotiana alata, secrete antibody to arabinogalactan protein (AGP). The specificity of the antibodies secreted by three cloned cell lines is primarily directed to
The plant kingdom is an underexplored source of valuable proteins which, like plant lectins, display unique interacting specificities. Furthermore, plant protein diversity remains under-exploited due to the low availability and heterogeneity of native sources. All these hurdles could be overcome
Plant viruses cause devastating diseases in plants, yet no effective viricide is available for agricultural application. We screened cultured filtrates derived from various soil microorganisms cultured in vegetable broth that enhanced plant viral resistance. A cultured filtrate, designated F8
Xyloglucan is the dominant hemicellulosic polysaccharide of the primary cell wall of dicotyledonous plants that plays a key role in plant development. It is well established that xyloglucan is assembled within Golgi stacks and transported in Golgi-derived vesicles to the cell wall. It is also known
Nicotiana alata has a style-specific hydroxyproline-rich glycoprotein (the 120 kDa glycoprotein) which has properties of both extensins and AGPs [19, 20]. The 120 kDa glycoprotein is a soluble component in the extracellular matrix of the transmitting tract of styles where it accounts for ca. 9% of
Thirteen different, biotinylated plant lectins were tested for their ability to recognize specifically the glycoproteins of the two different plant rhabdoviruses potato yellow dwarf virus and eggplant mottled dwarf virus. All viruses were propagated on the same plant host species, Nicotiana rustica
Galactose, sucrose, and glucose (50 millimolar) applied to tobacco leaf discs (Nicotiana tabacum L. cv ;Xanthi') during a prolonged incubation (5-6 d) markedly stimulated ethylene production which, in turn, could be inhibited by aminoethoxyvinylglycine (2-amino-4-(2'-aminoethoxy)-trans-3-butenoic
The plasma membrane hexose transporter and the tonoplast hexose transporter from heterotrophically grown transformed Nicotiana tabacum cells have been studied in vitro using membrane vesicles for trans-zero transport studies. In highly purified phase-partitioned outside-out plasma membrane vesicles
Galactinol synthase (GolS) is a key enzyme in raffinose family oligosaccharide (RFO) biosynthesis. The finding that GolS accumulates in plants exposed to abiotic stresses indicates RFOs function in environmental adaptation. However, the evolutionary relationships and biological functions of GolS
The major cationic peanut (Arachis hypogaea) peroxidase, secreted into the extracellular space, is a glycoprotein with three N-linked glycans (polysaccharides) which are connected to the peptide backbone at Asn-60, Asn-144 and Asn-185. In this report, a C-terminal histidine-tagged cationic peanut