Seite 1 von 392 Ergebnisse
Glutathione reductase (GR), a homodimeric FAD-dependent disulfide reductase, is essential for redox homeostasis of the malaria parasite Plasmodium falciparum and has been proposed as an antimalarial drug target. In this study we performed a virtual screening against PfGR, using the structures of
A variety of chemicals induce site-specific lesions in the rodent nasal cavity. In order to explore the reasons for this site-selectivity, methodology for (a) creation of a 3-dimensional (3D) model of a rat nasal cavity, and (b) mapping of semiquantitative data onto the model has been developed. The
Selenium ingestion may inhibit carcinogenesis. Epidemiologic studies have shown that age-adjusted death rates for cancer at most head and neck sites are lower in states where the soil and forage crops contain higher levels of selenium. The mode of action is incompletely understood, but may be
Many xenobiotics induce lesions within the nasal cavity of experimental animals which are site specific. This site selectivity may be due to regional deposition within the nasal cavity and/or the localisation of biotransformation enzymes. We have developed methodology which allows
OBJECTIVE
The involvement of antioxidants in oral diseases suggests that salivary glutathione level may be associated with cariogenic bacteria and dental caries. The aim of this study was to determine the association of salivary glutathione with dental caries and cariogenic bacteria.
METHODS
This is
The malarial parasite Plasmodium falciparum is known to be sensitive to oxidative stress, and thus the antioxidant enzyme glutathione reductase (GR; NADPH+GSSG+H(+) <==> NADP(+)+2 GSH) has become an attractive drug target for antimalarial drug development. Here, we report the 2.6A resolution crystal
The binding of glutathione, some related molecules and two redox compounds to crystals of glutathione reductase has been investigated by X-ray crystallography at 0.3-nm resolution. Models for several bound ligands have been built and subjected to crystallographic refinement. The results clearly show
BACKGROUND
Oral submucous fibrosis (OSMF) is a crippling slowly progressive disease of oral cavity that predominantly affects people habit of consuming areca nut and its commercial preparations which generates high levels of reactive oxygen species (ROS) during their metabolism.
OBJECTIVE
The
Dental caries is one of the most common, communicable and infectious disease worldwide. Oxidative stress may play a role in caries pathogenesis and salivary antioxidants may play a preventive role on dental caries. The aim of this study was to evaluate salivary superoxide dismutase, The three-dimensional structures of isoenzyme 3-3 of glutathione (GSH) transferase complexed with (9R,10R)- and (9S,10S)-9-(S-glutathionyl)-10-hydroxy-9,10-dihydrophenanthrene [(9R,10R)-2 and (9S,10S)-2], which are the products of the addition of GSH to phenanthrene 9,10-oxide, have been determined
The nasal cavity of vertebrates contains a variety of xenobiotic metabolizing enzymes that possess a broad range of substrate specificity ranging from metabolism of drugs, carcinogens, and steroid hormones, to dietary components and environmental pollutants. This investigation sought to localize the
Glutathione S-transferases (GSTs) are dimeric proteins that play a key role in phase II cellular detoxification. Here, the first crystal structure of a GST class-mu from marine crustacean shrimp Litopenaeus vannamei is reported at a resolution of 2.0 Å. The coordinates reported here have the lowest
Cytosolic glutathione transferases (GSTs) are major detoxification enzymes in aerobes. Each subunit has two distinct domains and an active site consisting of a G-site for binding GSH and an H-site for an electrophilic substrate. While the active site is located at the domain interface, the role of