15 Ergebnisse
Accumulation of the 28 KD protein of the glutelin-(G2) fraction was followed in developing maize endosperm, using sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE) and peak integration of scanned gels. 28 KD glutelin-2 could already be observed from 15 days after pollination and
Zea mays grown with high levels of N fertilizer transports more sucrose into kernels than with low N. Sucrose translocation was greatest in genotypes with the highest capacity to deposit nitrogenous compounds as zein and glutelin in the kernel. These two proteins combined contain about 80% of the
The sink capacity of the stalk in Zea mays L. (cv DEA) during the elongation period was previously investigated with (13)C and (15)N tracing. The chase experiment described here demonstrates the different behavior of intermediary reserves for C and N remobilization until full maturity of the
Experiments to establish the site of biosynthesis and the possible translocation into microsomes of glutelins-2 (28 kD G2) and low molecular weight zeins (10, 14, 15 kD Z2) have been carried out. Free and membrane-bound polyribosomes as well as microsomal membranes were isolated from immature
In planta expression of cell wall degrading enzymes is a promising approach for developing optimized biomass feedstocks that enable low-cost cellulosic biofuels production. Transgenic plants could serve as either an enzyme source for the hydrolysis of pretreated biomass or as the primary biomass
Degradation of the major storage proteins in maize endosperm, zein and glutelin, begins during the 2nd day of germination. The protein most abundant in the mature endosperm is degraded most rapidly. The patterns of protein loss are essentially similar in germinating seeds and excised endosperms.
To gain a better understanding of the biochemical basis for partitioning of photosynthetically fixed carbon between leaf and grain, a (14)CO(2) labeling study was conducted with field-grown maize plants 4 weeks after flowering. The carbon flow was monitored by separation and identification of (14)C
Many maize (Zea mays L.) mutant genes exist. Some affect protein content or composition, while others modify carbohydrates or kernel phenotype. In doublemutant lines, two mutant genes are present. We know little about interactions of such genes, however. We therefore examined a normal maize inbred,
This study was conducted to examine protein synthesis and l-[(35)S] methionine incorporation into the endosperm of Zea mays L. kernels developing in vitro. Two-day-old kernels of the inbred line W64A were placed in culture on a defined medium containing 10 microCuries l-[(35)S] methionine per
This study employed in vitro seed culture to determine how C and N supply influence the growth (i.e. starch accumulation) and protein composition of maize (Zea mays L.) endosperm. Immature kernels were grown to maturity on liquid medium containing various concentrations of C (sucrose at 234
Alcohol soluble seed storage proteins (zeins and alcohol soluble glutelins) of maize (Zea mays L.) were separated by reversed-phase high-performance liquid chromatography (RP-HPLC). The objectives were to assess the reproducibility of chromatographic profiles using seed of inbred lines that had been
Storage proteins of maize (Zea mays L.) were studied in germinated seeds, as were the proteins of protein bodies isolated from endosperms at different germination times. Major endosperm storage proteins were degraded in a sequential way, glutelin 2 being hydrolysed faster than zein 1.
Sodium dodecylsulfate-polyacrylamide gel electrophoresis reveals that zein prepared from normal maize inbred (Zea mays L.) contains six separable components. Z1 and Z2 are the predominant species, with molecular weights of 21,800 and 19,000 daltons. Amino acid analysis of these two components shows
The tissue-specific, developmental, and genetic control of four endosperm-active genes was studied via expression of GUS reporter genes in transgenic maize plants. The transgenes included promoters from the maize granule-bound starch synthase (Waxy) gene (zmGBS), a maize 27 kDa zein gene (zmZ27), a
BACKGROUND
The gene sb401 encoding a lysine-rich protein has been successfully integrated into the genome of maize (Zea mays), its expression showing as increased levels of lysine and total protein in maize seeds. As part of a nutritional assessment of transgenic maize, nutritional composition,