Seite 1 von 19 Ergebnisse
Currently, the only Food and Drug Administration-approved treatment of acute stroke is recombinant tissue plasminogen activator, which must be administered within 6 hours after stroke onset. The pan-selective σ-receptor agonist N,N'-di-o-tolyl-guanidine (o-DTG) has been shown to reduce infarct
The voltage-gated proton channel Hv1 plays important roles in proton extrusion, pH homeostasis, and production of reactive oxygen species in a variety of cell types. Excessive Hv1 activity increases proliferation and invasiveness in cancer cells and worsens brain damage in ischemic stroke. The
A copper-catalyzed cross-coupling reaction of guanidine nitrate with aryl iodides was used for the formation of N,N'-disubstituted guanidines to be used as potential therapeutics for strokes. A relatively inexpensive commercially available guanidine salt and a series of aryl iodides together with
1. NG-nitro-L-arginine (NO2Arg) is a guanidine nitro arginine derivative and an inhibitor of endothelium-dependent vascular relaxation. Significant rise of the systolic blood pressure was observed after 1 week administration of NO2Arg in food (0.023% in weight, about 2.8 mg of NO2Arg/rat per day) in
Acid-sensing ion channels (ASICs) are neuronal Na(+)-selective channels that are transiently activated by extracellular acidification. ASICs are involved in fear and anxiety, learning, neurodegeneration after ischemic stroke, and pain sensation. The small molecule 2-guanidine-4-methylquinazoline
Creatine, a compound that is critical for energy metabolism of nervous cells, crosses the blood-brain barrier (BBB) and the neuronal plasma membrane with difficulty, and only using its specific transporter. In the hereditary condition where the creatine transporter is defective (creatine transporter
BACKGROUND
Thrombotic disorders can lead to deep vein thrombosis, myocardial infarction and stroke. Thrombin plays a vital role in cascade reaction of blood coagulation, inhibition of the activity of thrombin can block the formation of thrombus and direct thrombin inhibitor has a prospect to
Apolipophorin III (apoLp-III) from the migratory locust, Locusta migratoria, represents the only full-length apolipoprotein whose three-dimensional structure has been solved. In the present study, spectroscopic methods have been employed to investigate the effects of deglycosylation (via
Diarylguanidines, acting as NMDA receptor ion channel site ligands, represent a new class of potential neuroprotective drugs. Several diarylguanidines structurally related to N,N'-di-o-tolylguanidine (DTG), a known selective sigma receptor ligand, were synthesized and evaluated in in vitro
Ischemic insults to the brain in stroke or traumatic brain injury produce excessive release of glutamate from depolarized nerve terminals. This excessive glutamate release in turn stimulates massive calcium entry into nerve cells, activating a biochemical cascade that results in cell death. A major
In the mammalian central nervous system, the N-methyl-D-aspartate (NMDA) subclass of glutamate receptors may play an important role in brain diseases such as stroke, brain or spinal cord trauma, epilepsy, and certain neurodegenerative diseases. Compounds which specifically antagonize the actions of
We have originated a family of N,N'-disubstituted guanidines that block the voltage-activated Ca2+ and Na+ channels governing glutamate release. These compounds, CNS 1237 (N-acenaphthyl-N'-methoxynaphthyl guanidine) and its analogues, are "use dependent" in their ability to attenaute
Acid-sensing ion channels (ASICs) are neuronal Na+-selective ion channels that open in response to extracellular acidification. They are involved in pain, fear, learning, and neurodegeneration after ischemic stroke. 2-Guanidine-4-methylquinazoline (GMQ) was recently discovered as the first nonproton
Acid-sensing ion channels (ASICs) are proton-gated cation channels found in peripheral and central nervous system neurons. The ASIC1a subtype, which has high Ca2+ permeability, is activated by ischemia-induced acidosis and contributes to the neuronal loss that accompanies ischemic stroke. Our
14 patients with advanced uremia had a mean cardiac index (CI) of 4.37 +/- 0.25 liters/min/m2, a mean stroke work index (SWI) of 65.6 +/- 3.7 g/m/m2 and a mean left ventricular filling pressure (LVFP) of 16.3 +/- 2.1 mm Hg. The left ventricular performance was estimated to be normal when CI or SWI