Seite 1 von 128 Ergebnisse
ErbB2 is known to upregulate glycolysis in breast cancer, however, the precise mechanisms remain unclear. In the present study, ErbB2 upregulated Hexokinase II (HK II) activity by increasing the binding of HK II to the mitochondrial outer membrane. Dysregulated glucose metabolism in high
Breast tumours responding to chemotherapy exhibit decreased [(18)F]fluoro-2-deoxy-D-glucose ([(18)F]FDG) incorporation. Underlying mechanisms of these changes is poorly understood. Here, in MCF-7 cells, responding to chemotherapy drugs commonly utilised in the treatment of breast cancer, [(18)F]FDG
Subcellular distribution of hexokinase (HK) isoenzymes in 22 human breast cancers (21 primary cancers and 1 axillary metastatic growth) and 7 non-pathological human mammary gland tissue samples was studied with starch gel electrophoresis on isolated cell fractions obtained by differential
Triple negative breast cancer (TNBC) is the hardest breast cancer subtype to treat due to lacking therapeutic target and treatment options. In this study, we found that SLUG expression was much higher in TNBC MDA-MB-231 cells than estrogen receptor alpha (ERα) positive breast cancer MCF7 cells.
BACKGROUND
Changes in 2-[(18)F]-fluoro-2-deoxy-D-glucose (FDG) incorporation by tumors, detected using positron emission tomography, during response to chemotherapy are utilized clinically in patient management. Here, the effect of treatment with growth-inhibitory doses of the anti-human epidermal
OBJECTIVE
Trastuzumab, effective in about 15 % of women with breast cancer, downregulates signalling through the Akt/PI3K and MAPK pathways. These pathways modulate glucose and phospholipid metabolism which can be monitored by [(18)F]FDG-PET and (31)P-NMR spectroscopy, respectively. Here, the
Tamoxifen has been clinically used in treating estrogen receptor (ER)-positive breast cancer for over 30 years. The most challenging aspect associated with tamoxifen therapy is the development of resistance in initially responsive breast tumors. We applied a parallel-reaction monitoring (PRM)-based
The advancement of breast cancer therapy is limited by the biologic behaviors of cancer cells, such as metastasis and recurrence. β-adrenoceptors (ADRB) are reported to be associated with the biologic behaviors of breast cancer and may influence glucose metabolism. Here, we sought to investigate the
Background: Most cancer cells exhibit increased glycolysis and use this metabolic pathway cell growth and proliferation. Targeting cancer cells' metabolism is a promising strategy in inhibiting cancer cell progression. We used
Brain metastases of breast cancer seem to be increasingin incidence as systemic therapy improves. Metastatic disease in the brain is associated with high morbidity and mortality. We present the first gene expression analysis of laser-captured epithelial cells from resected human brain metastases of
Hexokinase II (HKII), a key enzyme of glycolysis, is widely over-expressed in cancer cells. 3-bromopyruvate (3-BrPA), an inhibitor of HK II, has been proposed as a specific antitumor agent. Autophagy is a process that regulates the balance between protein synthesis and protein degradation. Autophagy
Cancer cells preferentially metabolize glucose through aerobic glycolysis. This phenomenon, known as the Warburg effect, is an anomalous characteristic of glucose metabolism in cancer cells. Chronic inflammation is a key promoting factor of tumourigenesis. It remains, however, largely unexplored
Emerging evidence suggests that metformin, a widely used anti-diabetic drug, may be useful in the prevention and treatment of different cancers. In the present study, we demonstrate that metformin directly inhibits the enzymatic function of hexokinase (HK) I and II in a cell line of triple-negative
Hexokinase-II (HK2) is a key enzyme involved in glycolysis, which is required for breast cancer progression. However, the underlying post-translational mechanisms of HK2 activity are poorly understood. Here, we showed that Proviral Insertion in Murine Lymphomas 2 (PIM2) directly bound to HK2 and
Expressions of HKII and Glut-1 were studied in untreated primary human breast cancers by immunohistochemistry. 79% of the breast cancers were HKII-positive and 61% were Glut-1-positive. Average positive malignant cell areas were 66 +/- 41% for HKII and 29 +/- 36% for Glut-1. HKII staining was