Seite 1 von 16 Ergebnisse
Excessive fibrosis and extracellular matrix deposition resulting from upregulation of target genes expression mediated by transforming growth factor-beta (TGF-β)/SMAD and hypoxia inducible factor-1 (HIF-1) signaling pathways are the main mechanisms that drive keloid formation. Sumoylation is a
Recent observations have suggested that retinoids might affect the metabolism of the extracellular matrix of connective tissues. In this study, we examined the effects of tretinoin (all-trans-retinoic acid) and isotretinoin (13-cis-retinoic acid) on the production of procollagen in keloid fibroblast
Keloids occur after failure of the wound healing process; inflammation persists, and various treatments are ineffective. Keloid pathogenesis is still unclear. We have previously analysed the gene expression profiles in keloid tissue and found that HtrA1 was markedly up-regulated in the keloid
Protease-activated receptor (PAR)-1 and PAR-2 are reported to contribute to the fibrotic process in a number of organs, including lung, liver, pancreas, and kidney. The aim of this study was to localize expression and biological activity of PAR-1 and PAR-2 in normal and pathological cutaneous scars.
Cultured epithelial cells, including those from the oral epithelium, have been successfully applied in the promotion of scarless wound healing. Factors released from the epithelial cells are thought to contribute significantly to the beneficial effects. In the conditioned medium of human oral
To characterize apoptosis in keloids and the mechanisms responsible for this process, the expression of activated caspase-9 and -3 in fibroblasts obtained from keloids was analyzed. Immunohistochemistry revealed that the number of fibroblasts positive for terminal deoxynucleotide
Wound healing is a complex biological process, and imbalances of various substances in the wound environment may prolong healing and lead to excessive scarring. Keloid is abnormal proliferation of scar tissue beyond the original wound margins with excessive deposition of extracellular matrix (ECM)
Literature data indicate that mast cells (MCs) are involved in angiogenesis through the release of several pro-angiogenetic factors among which tryptase, a serine protease stored in MC granules, is one of the most active. However, no data are available concerning the role of MCs during keloids'
The deposition of alpha-1-antitrypsin and alpha-2-macroglobulin, both known to be inhibitors of human skin collagenase, is significantly increased in keloids and in hypertrophic scars (as compared to normal skin). However, following intralesional triamcinolone treatment, a marked resorption of these
Keloids are tumor-like skin scars that grow as a result of the aberrant healing of skin injuries, with no effective treatment. We provide new evidence that both overexpression of plasminogen activator inhibitor-1 (PAI-1) and elevated collagen accumulation are intrinsic features of keloid fibroblasts
Keloid scars are common benign fibroproliferative reticular dermal lesions with unknown etiology and ill-defined management with high rate of recurrence post surgery. The progression of keloids is characterized by increased deposition of extracellular matrix proteins, invasion into the surrounding
Mast cells (MCs) are active participants in blood coagulation and innate and acquired immunity. This review focuses on the development of mouse and human MCs, as well as the involvement of their granule serine proteases in inflammation and the connective tissue remodeling that occurs during the
Dipeptidyl peptidase IV (DPP4) is a peptidase whose inhibition is beneficial in Type II diabetes treatment. Several evidences suggest potential implication of DPP4 in skin disorders such as psoriasis, keloids and fibrotic skin diseases where its inhibition could also be beneficial. DPP4 expression
Recent clinical observations have suggested that retinoids, which are in frequent use in dermatology, can affect the connective tissue metabolism in skin and other tissues. In this study, we examined the effects of several retinoids on the metabolism of collagen by human skin fibroblasts in culture.
Fibroblast activation protein-α (FAP) is a serine protease that can provide target specificity to therapeutic agents because in adults its expression is restricted to pathologic sites, including cancer, fibrosis, arthritis, wounding, or inflammation. It is not expressed in most normal tissues. The