Seite 1 von 80 Ergebnisse
Objectives: To evaluate and compare the fatigue behavior (fatigue limit and fatigue life) and damage modes of high-performance poly-ether-ketone-ketone (PEKK), zirconia and alloy bilayered crowns.
Ketogenic diets have been associated with reductions in free-living physical activity, a response that can be counterproductive in individuals trying to lose weight. To explore whether popular low-carbohydrate diets might impact the desire to exercise by raising blood ketone concentrations, fatigue
In this article, the data obtained from the uniaxial fully-reversed fatigue experiments conducted on polyether ether ketone (PEEK), a semi-crystalline thermoplastic, are presented. The tests were performed in either strain-controlled or load-controlled mode under various levels of loading. The data
In this study, the effects of microstructural inclusions on fatigue life of polyether ether ketone (PEEK) was investigated. Due to the versatility of its material properties, the semi-crystralline PEEK polymer has been increasingly adopted in a wide range of applications particularly as a
A fracture mechanics approach was applied to estimate the life of a prosthesis injection moulded from short carbon fibre reinforced poly ether ether ketone. Flexural modulus and strength, fracture toughness, fatigue endurance limit, fatigue crack growth rate and threshold stress intensity factor
To compare the retention force of individual clasps made from cobalt chromium (CoCr) or new aryl ketone polymer (AKP) material, Ultaire™ AKP, following prolonged fatigue testing along ideal and non-ideal paths of removal and to assess 3D deformation of the active and passive clasp The poly-ether-ether-ketone (PEEK) polymer is of great interest as an alternative to titanium in orthopedics because of its biocompatibility and low elastic modulus. This study evaluated the fatigue limits of PEEK and the effects of the low elastic modulus PEEK in relation to existing dental
Bonito extract (BE), a hot-water extract of bonito muscle, has traditionally been considered as a folk remedy for fatigue. In this study we investigated the effects of BE on physical fatigue. BE was divided into, high, mid, and low-molecular-weight fractions (LMF), to explore the effectiveness of BE
BACKGROUND
Fatigue in physician trainees may compromise patient safety and the well-being of the trainees and limit the educational opportunities provided by training programs. Anecdotal evidence suggests that the on-call workload and physical demands experienced by trainees are significant despite
We investigated the relationships among behavioral parameters, forced-swimming test parameters, and plasma and organ biotin concentrations in biotin-deficient mice. Male ddY mice were divided into four groups: early biotin deficiency group (ED group; biotin-free diet for three weeks), progressive
Screw pullout is a very common problem in the fixation of sacrum with pedicle screws. The principal cause of this problem is that the cyclic micro motions in the fixation of sacrum are higher than the other regions of the vertebrae that limit the osteo-integration between bone and screw. In addition
Mechanical properties of composites manufactured by high-temperature polymer polyether ether ketone (PEEK) with continuous reinforced fibers are closely dependent on ambient temperature variations. In order to effectively study fatigue failure behaviors of composites under the coupled
Poly(ether-ether-ketone) (PEEK) has been used as a load bearing orthopaedic implant material with clinical success. All of the orthopaedic applications contain stress concentrations (notches) in their design; however, little work has been done to examine the fatigue behavior of PEEK in the presence
This paper presents a theoretical analysis of the maximum contact stress and the lubrication regimes for PEEK (Polyether-ether-ketone) based self-mating cervical total disc arthroplasty. The NuNec(®) cervical disc arthroplasty system was chosen as the study object, which was then analytically
Despite its widespread clinical use in load-bearing orthopedic implants, polyether-ether-ketone (PEEK) is often associated with poor osseointegration. In this study, a surface-porous PEEK material (PEEK-SP) was created using a melt extrusion technique. The porous layer was 399.6±63.3 μm thick and