Seite 1 von 51 Ergebnisse
[reaction: see text] Two new neoclerodane diterpenes, salvinicins A (4) and B (5), were isolated from the dried leaves of Salvia divinorum. The structures of these compounds were elucidated by spectroscopic techniques, including (1)H and (13)C NMR, NOESY, HMQC, and HMBC. The absolute stereochemistry
Three new neoclerodane diterpenoids, divinatorins A-C (7-9), have been isolated from the leaves of Salvia divinorum. The compounds were identified by spectroscopic methods as derivatives of the antibiotic (-)-hardwickiic acid (10), which was also isolated, along with four other known terpenoids.
A search for biosynthetic precursors of salvinorin A (1) led to the isolation of a new neoclerodane diterpenoid hemiacetal mixture, salvinorins J (2), from the chloroform extract of Salvia divinorum. A leaf surface extraction method was used on S. divinorum, affording a chlorophyll-free extract
Transformations that selectively modify the furan ring present in a variety of naturals products would be useful in the synthesis of biological probes but remain largely underexplored. The neoclerodane diterpene salvinorin A, isolated from Salvia divinorum, is an example of a furan-containing
Further modification of salvinorin A (1a), the major active component of Salvia divinorum, has resulted in the synthesis of novel neoclerodane diterpenes with opioid receptor affinity and activity. We report in this study that oxadiazole 11a and salvidivin A (12a), a photooxygenation product of 1a,
Three new neoclerodane diterpenoids, salvinorins D-F (4-6), have been isolated from the leaves of Salvia divinorum. The structures were elucidated by chemical and spectroscopic methods, particularly 1D and 2D NMR. A simplified isolation method using chromatography on activated carbon also gave
Further synthetic modification of the furan ring of salvinorin A (1), the major active component of Salvia divinorum, has resulted in novel neoclerodane diterpenes with opioid receptor affinity and activity. A computational study has predicted 1 to be a reproductive toxicant in mammals and is
Bioactivity-guided fractionation of the leaves of Salvia divinorum has resulted in the isolation of three new neoclerodane diterpenoids: divinatorin D (1), divinatorin E (2), and salvinorin G (3), together with 10 known terpenoids, divinatorin C (4), hardwickiic acid (5), salvinorin-A (6), -B (7),
Salvinorin A (1) is a hallucinogenic neoclerodane diterpene isolated from the widely available psychoactive plant Salvia divinorum and is the first example of a non-nitrogenous opioid receptor ligand. At present, there is little information available as to why this compound is selective for kappa
Six new rearranged neoclerodane diterpenoids (1-6), as well as three known ones, were obtained from the aerial part of Salvia hispanica L. Their structures were elucidated by extensive analysis of spectroscopic data (1D, 2D NMR, and HRESIMS) and Mosher's method. The absolute configurations of 1, 2,
The neoclerodane diterpene salvinorin A is the major active component of the hallucinogenic mint plant Salvia divinorum Epling and Játiva (Lamiaceae). Since the finding that salvinorin A exerts its potent psychotropic actions through the activation of opioid receptors, the site of action of morphine
Modification of the furan ring of salvinorin A (1), the main active component of Salvia divinorum, has resulted in novel neoclerodane diterpenes with opioid receptor affinity and activity. Conversion of the furan ring to an aldehyde at the C-12 position (5) has allowed for the synthesis of analogues
Salvinorin A (1), a neoclerodane diterpene from the hallucinogenic mint Salvia divinorum, is the only known naturally occurring non-nitrogenous and specific κ-opioid agonist. Some oxidative modifications of the A ring in the congeners of 1 isolated from Salvia splendens salviarin, splenolide B,
Salvinorin A (1), a neoclerodane diterpene from the hallucinogenic mint Salvia divinorum, is the only known non-nitrogenous and specific kappa-opioid agonist. Several structural congeners of 1 isolated from Salvia splendens (2 - 8) together with a series of semisynthetic derivatives (9 - 24), some
A new 5,10-seco-neoclerodane diterpene, polystachyne F (1), was isolated from the aerial parts of Salvia polystachya. Its structure was established on the basis of its spectroscopic properties and X-ray crystallographic analysis. Some correlations in the NOESY spectrum of 1 suggested the existence