Seite 1 von 39 Ergebnisse
Oleandrin is a monomeric compound extracted from leaves and seeds of Nerium oleander. It had been reported that oleandrin could effectively inhibit the growth of human cancer cells. However, the specific mechanisms of the oleandrin-induced anti-tumor effects remain largely unclear. Genomic
Anvirzel is an extract of Nerium oleander currently undergoing Phase I clinical evaluation as a potential treatment for cancer. Two of the active components of Anvirzel are the cardiac glycosides oleandrin and oleandrigenin. Previous studies have demonstrated that, in vitro, cardiac glycosides may
Oleandrin, derived from the leaves of Nerium oleander, has been shown to possess anti-inflammatory and tumor cell growth-inhibitory effects. Here, we provide evidence that oleandrin could possess anti-tumor promoting effects. We determined the effect of topical application of oleandrin to CD-1 mice
Chemotherapeutic agent is characterized by its concentration in tumor cells with minimum side effects. Oleandrin, a polyphenolic cardiac glycoside is known to induce apoptosis in tumor cells. However, no report is available on its efficacy in primary cells. In this report we are providing the
Nerium oleander, a member of family Apocynaceae, is commonly known as Kaner in various countries of Asia and Mediterranean region. This plant has been renowned to possess significant therapeutic potential due to its various bioactive compounds which have been isolated from this plant e.g., cardiac
Oleandrin is a glycoside that inhibits the ubiquitous enzyme Na+/K+-ATPase. In addition to its known effects on cardiac muscle, recent in vitro and in vivo evidence highlighted its potential for anticancer properties. Here, we evaluated for the first time the effect of oleandrin on brain tumors. To
Lipid-soluble cardiac glycosides such as bufalin, oleandrin, and digitoxin have been suggested as potent agents that might be useful as anticancer agents. Past research with oleandrin, a principle cardiac glycoside in Nerium oleander L. (Apocynaceae), has been shown to induce cell death through
OBJECTIVE
Evidence indicates that the cardiac glycoside oleandrin exhibits cytotoxic activity against several different types of cancer. However, the specific mechanisms underlying oleandrin-induced anti-tumor effects remain largely unknown. The present study examined the anti-cancer effect and
Breast cancer is the most common malignant tumor in women. Due to limited treatment outcome and high rate of metastasis, the prognosis is especially poor for triple-negative breast cancer. It is urgent to discover and develop novel agents for treatment of breast cancer. Herein, we Cardiac glycosides have been reported to exhibit cytotoxic activity against several different cancer types, but studies against colorectal cancer are lacking. In a screening procedure aimed at identifying natural products with activity against colon cancer, several cardiac glycosides were shown to
Agents that can suppress the activation of nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1) may be able to block tumorigenesis and inflammation. Oleandrin, a polyphenolic cardiac glycoside derived from the leaves of Nerium oleander, is a candidate NF-kappaB and AP-1 modulator. We
Oleandrin, a cardiac glycoside component of Nerium oleander, has been shown to induce apoptosis in malignant cells. While human tumor cells are very sensitive to growth inhibition by oleandrin, murine tumor cells are extremely resistant. Using human BRO and mouse B16 melanoma cell lines, we explored
The leaves of Nerium indicum Mill. have been utilized traditionally to cure cancer. By Bioassay (BST) guided isolation method, six compounds were isolated from the CHCl3 extract of the leaves. Selectivity of these compounds (in 0.6-12,500 ng/ml) was tested on various human cancer (MCF7, EVSA-T,
The principal active constituent of the botanical drug candidate PBI-05204, a supercritical CO(2) extract of Nerium oleander, is the cardiac glycoside oleandrin. PBI-05204 shows potent anticancer activity and is currently in phase I clinical trial as a treatment for patients with solid tumors. We
We previously reported neuroprotective activity of the botanical anti-cancer drug candidate PBI-05204, a supercritical CO2 extract of Nerium oleander, in brain slice and in vivo models of ischemic stroke. We showed that one component of this neuroprotective activity is mediated through its principal