6 Ergebnisse
Flavonol glycosides constitute one of the most prominent plant natural product classes that accumulate in the model plant Arabidopsis thaliana. To date there are no reports of functionally characterized flavonoid glycosyltransferases in Arabidopsis, despite intensive research efforts aimed at both
Functional characterization of genes involved in the flavonoid metabolism and its regulation requires in-depth analysis of flavonoid structure and composition of seed from the model plant Arabidopsis thaliana. Here, we report an analysis of the diverse and specific flavonoids that accumulate during
The plant-specific phi class of glutathione transferases (GSTFs) are often highly stress-inducible and expressed in a tissue-specific manner, suggestive of them having important protective roles. To date, these functions remain largely unknown, although activities associated with the binding and
Biotransformation of flavonoids using Escherichia coli harboring specific glycosyltransferases is an excellent method for the regioselective synthesis of flavonoid glycosides. Flavonol rhamnosides have been shown to contain better antiviral and antibacterial activities compared to flavonol
Hydrocinnamic acid esters, lignin, flavonoids, glucosinolates, and salicylic acid protect plants against UV exposure, oxidative stress, diseases, and herbivores. Through the phenylpropanoid pathway, certain Brassicaceae family members, including Arabidopsis thaliana and Brassica napus, accumulate
Phenotypic characterization of the Arabidopsis thaliana transparent testa12 (tt12) mutant encoding a membrane protein of the multidrug and toxic efflux transporter family, suggested that TT12 is involved in the vacuolar accumulation of proanthocyanidin precursors in the seed. Metabolite analysis in