Seite 1 von 36 Ergebnisse
Global interest in sugarcane has increased significantly in recent years because of its economic impact on sustainable energy production. The purpose of the present study was to evaluate changes in the concentrations of total sugars, amino acids, free proline, and total proteins by colorimetric
Sugarcane shows reduced crop stand under relatively suboptimal conditions; the main reason for this is its sensitivity to ionic stress in the soil solution. This research was performed to explore some physiological and developmental changes in the immature sugarcane buds submitted to salt stress and
Pokkah boeng disease (PBD) is a foliar disease causing severe losses in sugarcane crop production. Research into resistance mechanisms against the causal agent, Fusarium verticillioides, is particularly important for farmers and researchers. This work based on the comprehensive analysis of
Sugarcane (Saccharum officinale L.; Poaceae) is a sugar-producing plant widely grown in tropic. Being a glycophytic species, it is very sensitive to salt stress, and salinity severely reduces growth rate and cane yield. The studies investigating the regulation of salt defense metabolite-related
Sugarcane transgenic overexpressing EaGly III from Erianthus arundinaceus showed enhanced water deficit stress tolerance. Methylglyoxal (MG), an α-ketoaldehyde formed from either glycolysis or TCA cycle, is capable of causing total cellular damage via the generation of reactive oxygen species (ROS),
Sugarcane is a sugar-producing crop widely grown in tropical regions in over 120 countries of the world. Salt-affected soil is one of the most significant abiotic constraints that inhibit growth and crop productivity, and, consequently, reduce sucrose concentration in the stalk. The present study
Several nitrogen compounds were identified and quantified in the apoplastic and symplastic sap of sugarcane stems. The sap of stems was composed mainly of soluble sugars, which constituted 95% of the total organic compounds detected. Sap also contained nitrogen compounds, with amino acids (50-70% of
A sugarcane (Saccharum sinensis Roxb.) cell line R932 resistant to growth inhibition by the proline analogue hydroxyproline was selected. R932 showed greater tolerance to PEG and low temperature stress than the donor. The line R932 showed larger accumulation of proline (x3.2) than the sensitive
Semi-quantitative RT-PCR based transcript expression of stress responsive genes was studied in leaves of sugarcane plants exposed to short-term (up to 24 h) salt (NaCl, 200 mM) or polyethylene glycol-PEG 8000 (20% w/v) stress. Transient increase in expression of NHX (sodium proton antiporter), SUT1
Pantoea sp. is an endophytic nitrogen-fixing bacterium isolated from sugarcane tissues. The aim of the present study was to determine the contents of amino acids in sugarcane as a result of inoculation of nodes and nodal roots with Pantoea sp. strain 9C and to evaluate the effects of amino acids on
Weeds did not appear to serve as reservoirs for phytophagous Louisiana sugarcane nematode populations except for Criconemella spp., Meloidogyne spp., Tylenchorhynchus annulatus, and total phytophagous nematode densities were lower on weed-stressed cane and were accompanied by reduced accumulations
In a single experiment, field-grown Louisiana sugarcane was augmented with phytoparasitic nematodes, treated with aldicarb, or left untreated in both weedy and weed-free habitats to study interactions among nematodes, weeds, sugarcane, and sugarcane free amino acid titers. Aldicarb reduced three of
To evaluate the genotypic differences of sugarcane in response to cadmium (Cd) stress, the growth, Cd content, antioxidant enzymes, malondialdehyde (MDA) and proline in the leaves of five sugarcane varieties were investigated under normal and Cd-contaminated soil at 90 days after treatment (DAT).
Impact of elevated temperature on physiological and biochemical changes were evaluated in 5 commercial sugarcane genotypes and 2 wild species clones at two different growth phases. The study revealed that heat stress decreased chlorophyll content, chlorophyll stability index (CSI), SPAD value,
The research work was arranged to check the role of AgNPs and silver ions on callus cells of sugarcane (Saccharum spp. cv CP-77,400). AgNPs were synthesized chemically and characterized by UV-Vis spectra, XRD and SEM. AgNPs and silver ions were applied in various concentrations (0, 20, 40, 60