11 Ergebnisse
Conjugation of xenobiotic compounds and endogenous metabolites to glutathione is an ubiquitous process in eukaryotes. In animals, the first and rate-limiting step of glutathione-S-conjugate metabolism is characterized by the removal of the aminoterminal glutamic acid residue of glutathione. In
The relation between loss of glutathione due to metal-induced phytochelatin synthesis and oxidative stress was studied in the roots of copper-sensitive and tolerant Silene cucubalus (L.) Wib., resistant to 1 and 40 micromolar Cu, respectively. The amount of nonprotein sulfhydryl compounds other than
An enzyme has been discovered and characterized from Silene cucubalus cell suspension cultures that catalyzes the transfer of the gamma-glutamylcysteine dipeptide moiety of glutathione to an acceptor glutathione molecule or a growing chain of [Glu(-Cys)](n)-Gly oligomers, thus synthesizing
Arsenate tolerance, As accumulation and As-induced phytochelatin accumulation were compared in populations of Silene paradoxa, one from a mine site enriched in As, Cu and Zn, the other from an uncontaminated site. The mine population was significantly more arsenate-tolerant. Arsenate uptake and
This research aimed to indicate mechanisms involved in protection against the imbalanced generation of reactive oxygen species (ROS) during heavy metals (HMs) exposition of Silene vulgaris ecotypes with different levels of metal tolerance. Specimens of non-metallicolous (NM), calamine (CAL),
The concentration of acid-soluble thiols other than reduced glutathione (SH - GSH) increases in the roots of zinc-sensitive and zinc-tolerant Silene vulgaris (Moench) Garcke after exposure to zinc for 1 to 3 d. The concentration of SH - GSH in the roots is higher in the sensitive plants than in the
This study compared co-tolerance to salinity and cadmium and investigated its mechanisms in a facultative metallophyte Silene vulgaris originating from distinct habitats. Shoots of calamine (Cal) and non-metallicolous (N-Cal) ecotypes grown in vitro were exposed to 10 and 100 mM NaCl, 5 μM
In the present research, Silene vulgaris as a representative species growing on both unpolluted and heavy metal (HM) polluted terrains were used to identify ecotype-specific responses to metallic stress. Growth, cell ultrastructure and element accumulations were compared between non-metallicolous
Phytochelatins (PCs), non-protein peptides with the general structure [(γ-Glu-Cys)n-Gly (n≥ 2)], are involved in the detoxification of toxic heavy metals mainly in higher plants. The synthesis of the peptides is mediated by phytochelatin synthase (PCS), which is activated by a range of heavy metals.