3 Ergebnisse
Manganese (Mn) toxicity is a major constraint limiting plant growth on acidic soils. Superior Mn tolerance in Stylosanthes spp. has been well documented, but its molecular mechanisms remain largely unknown. In this study, superior Mn tolerance in Stylosanthes guianensis was confirmed, as reflected
Stylo has a great potential for Al3+ resistance in acidic soils through secretion of citrate from the roots. To get insight into the molecular mechanisms responsible, transcriptomic changes were investigated in the roots after treatment with T01 (-Al3+, pH6.0), T02 (-Al3+, pH4.3) and T03 (50 µM
Stylosanthes (stylo) is a dominant leguminous forage in the tropics. Previous studies suggest that stylo has great potential for aluminium (Al) tolerance, but little is known about the underlying mechanism. A novel malic enzyme, SgME1, was identified from the Al-tolerant genotype TPRC2001-1 after 72