12 Αποτελέσματα
In this study, the antifungal effect of cinnamaldehyde against Fusarium sambucinum and its underlying mechanisms were determined.METHODS AND RESULTS
Minimum inhibitory concentration and minimal fungicidal concentration of cinnamaldehyde were 3 and 4
Mycochemical examination of a methanol extract of Scleroderma bovista Fr. (Agaricomycetes) led to the isolation of 7 compounds, which were, to our knowledge, identified for the first time in this species. The chemical structures of these compounds were determined through extensive spectroscopic
Soil is thought to be important both as a source and a sink of carbonyl sulfide (COS) in the troposphere, but the mechanism affecting COS uptake, especially for fungi, remains uncertain. Fungal isolates that were collected randomly from forest soil showed COS-degrading ability at high frequencies:
The antifungal effects of oligochitosan (OCS) against Ceratocystis fimbriata that causes black rot disease in sweet potato and its apoptosis mechanism were evaluated. OCS restrained the mycelial growth and spores germination of C. fimbriata, and decreased the ergosterol content of cell membrane.
Botanical and fungal biopesticides, including endophytes, are in high demand given the current restrictive legislations on the use of chemical pesticides. As part of an ongoing search for new biopesticides, a series of fungal endophytes have been isolated from selected medicinal plants including
The ergosterol biosynthesis inhibitor prochloraz is a broad-spectrum fungicide and has been registered in China since 2007 for control of the economically important necrotrophic pathogen Sclerotinia sclerotiorum. In this study, relative baseline sensitivity and toxic actions of prochloraz on S.
Fusarium graminearum, the causal agent of wheat head blight, shows intrinsic resistance to amine fungicides. It is commonly accepted that the amines target sterol C-14 reductase and sterol Δ(8)-Δ(7) isomerase of ergosterol biosynthesis, encoded by the genes ERG24 and ERG2, respectively. Analysis of
BACKGROUND
Endophytic fungi are receiving attention as sources of structurally novel bioactive secondary metabolites towards drug discovery from natural products. This study reports the isolation and characterization of secondary metabolites from an endophytic fungus Aspergillus nidulans, associated
Selected isolates of fungi were grown on wheat straw and corncob in the presence of different moistening agents such as water, molasses, potato dextrose broth and distillery effluent. All the fungal isolates responded differently with respect to growth and ligninolytic enzyme production. Fungal
A pathogenic isolate of Fusarium, F. oxysporum f. sp. batatas O-17 (PF), causes wilt disease in leaf etiolation in sweet potato (Ipomoea batatas) and morning glory (Ipomoea tricolor). Extracts from PF cultures were screened for phytotoxic components using a growth inhibition assay with morning glory
An endophytic fungus Talaronyces pinpurogenus was isolated from the seeds of the popular edible fruit Pouteria campechiana. The fungus was fermented in potato dextrose agar and the fungal media were extracted with EtOAc. Chromatographic separation of the EtOAc extracts over silica gel, Sephadex
The influence of high carbon dioxide and low oxygen concentrations on growth by the foodborne fungal species, Mucor plumbeus, Fusarium oxysporum, Byssochlamys fulva, Byssochlamys nivea, Penicillium commune, Penicillium roqueforti, Aspergillus flavus, Eurotium chevalieri and Xeromyces bisporus was