Σελίδα 1 από 29 Αποτελέσματα
Biotransformation of β-mangostin (1) by the endophytic fungus Xylaria feejeensis GM06 afforded hexacyclic ring-fused xanthenes with an unprecedented hexacyclic heterocylic skeleton. β-Mangostin (1) was transformed to two diastereomeric pairs of enantiomers, mangostafeejin A [(-)-2a/(+)-2b)] and
Pure β-mangostin (1) was isolated from the stem bark of Garcinia mangostana L. One monoacetate (2) and five O-alkylated β-mangostin derivatives (3-7) were synthesised from β-mangostin. The structures of these compounds were elucidated and determined using spectroscopic techniques such as 1D NMR and
The concise, efficient synthesis of alpha-mangostin is described in eight simple steps with 8.3% overall yield. Highlights include a practical approach to construct the isopentene groups and other diverse groups at C-2 and C-8 of the xanthene skeleton through Claisen rearrangement and Wittig
BACKGROUND
The fruit hull of Garcinia mangostana Linn. has been used in traditional medicine for treatment of various inflammatory diseases. Hence, this study aims to investigate the in vitro and in vivo anti-inflammatory effect of β mangostin (βM), a major compound present in Garcinia
Melanogenesis is a key pathway for the regulation of skin pigmentation and the development of skin-lightening/skin-whitening drugs or cosmetics. In this study, we found that β-mangostin from seedcases of Garcinia mangostana inhibited α-melanocyte-stimulating hormone (α-MSH)-mediated melanogenesis in
Five xanthones from the bark of Garcinia cowa, namely 7-O-methylgarcinone E (1), cowanin (2), cowanol (3), cowaxanthone (4), and beta-mangostin (5), were found to possess in vitro antimalarial activity against Plasmodium falciparum with IC50 values ranging from 1.50 to 3.00 micrograms/ml. Complete
Multidrug resistant Plasmodium falciparum is the major health problem in the tropics. Discovery and development of new antimalarial drugs with novel modes of action is urgently required. The aim of the present study was to investigate antimalarial activities of Garcinia mangostana Linn. crude
Extracts of root bark, stem bark and the latex collected from the green fruits of Garcinia mangostana gave alpha-mangostin, beta-mangostin, gamma-mangostin, garcinone-E, methoxy-beta-mangostin and a new geranylated biphenyl derivative 3-hydroxy-4-geranyl-5-methoxybiphenyl. The latex of G. mangostana
Species of Garcinia have been used to combat malaria in traditional African and Asian medicines, including Ayurveda. In the current study, we have identified antiplasmodial benzophenone and xanthone compounds from edible Garcinia species by testing for in vitro inhibitory activity against Plasmodium
Our phytochemical study on the stem bark of Garcinia mangostana has led to the discovery of a new furanoxanthone, mangaxanthone A (1), together with five known analogs. The five known analogs that were isolated are α-mangostin (2), β-mangostin (3), cowagarcinone B (4), and dulcisxanthone F (5). The
Three new xanthones, mangostenol (1), mangostenone A (2), and mangostenone B (3), were isolated from the green fruit hulls of Garcinia mangostana, along with the known xanthones, trapezifolixanthone, tovophyllin B (4), alpha- and beta-mangostins, garcinone B, mangostinone, mangostanol, and the
Studies on the stem of Garcinia mangostana have led to the isolation of one new xanthone mangosharin (1) (2,6-dihydroxy-8-methoxy-5-(3-methylbut-2-enyl)-xanthone) and six other prenylated xanthones, alpha-mangostin (2), beta-mangostin (3), garcinone D (4),
The purification of the acetone extract from the inflorescences of Garcinia cowa led to the isolation of a new benzophenone derivative, cowanone (1), together with seven known xanthones, α-mangostin (2), β-mangostin (3), cowanin (4), fuscaxanthone A (5), 9-hydroxycalabaxanthone (6), garcinianone A
Uncontrolled regulation of cyclin dependent kinases (CDKs) has negative implications in many cancers and malignancies and has recently led to the approval of select CDK inhibitors. Herein we present data reporting that xanthones, a class of compounds isolated from the purple mangosteen (Garcinia
A new prenylated xanthone, garcixanthone A (5), together with eight known compounds, mangostanaxanthones I (1) and II (2), garcinone E (3), β-mangostin (4), 8-hydroxycudraxanthone G (6), garcinone C (7), cudraxanthone G (8), and (-)-epicatechin (9) were isolated from the EtOAc-soluble fraction of