Σελίδα 1 από 28 Αποτελέσματα
Ceramides have been implied in intracellular signal transduction systems regulating cellular differentiation, activation, survival and apoptosis and thus appear capable of changing the life style of virtually any cell type. Ceramide belongs to the group of sphingosine-based lipid second messenger
Ceramides can induce cellular differentiation, activation, survival and apoptosis and thus appear capable of changing the life style of virtually any cell type. Ceramides have been shown to play important roles in a variety of signal transduction systems. Within the last few years much has been
Sepsis is a serious clinical problem. Negative regulation of innate immunity is associated with sepsis progression, but the underlying mechanisms remains unclear. Here we show that the receptor CD300f promotes disease progression in sepsis. CD300f -/- mice were protected from death after cecal
Gene set-based analysis of genome-wide association study (GWAS) data has recently emerged as a useful approach to examine the joint effects of multiple risk loci in complex human diseases or phenotypes. Dental caries is a common, chronic, and complex disease leading to a decrease in quality of life
The sphingolipid ceramide is intimately involved in the growth, differentiation, senescence, and death of normal and cancerous cells. Mitochondria are increasingly appreciated to play a key role in ceramide-induced cell death. Recent work showed the C16-pyridinium ceramide analogue LCL-30 to induce
The cytosolic protein CERT transfers ceramide from the endoplasmic reticulum to the Golgi apparatus where ceramide is converted to SM. The C-terminal START (steroidogenic acute regulatory protein-related lipid transfer) domain of CERT binds one ceramide molecule in its central amphiphilic cavity.
In mammalian cells, ceramide is synthesized in the endoplasmic reticulum and transferred to the Golgi apparatus for conversion to sphingomyelin. Ceramide transport occurs in a nonvesicular manner and is mediated by CERT, a cytosolic 68-kDa protein with a C-terminal steroidogenic acute regulatory
The CD1d protein is a nonpolymorphic MHC class I-like protein that controls the activation of natural killer T (NKT) cells through the presentation of self- and foreign-lipid ligands, glycolipids, or phospholipids, leading to the secretion of various cytokines. The CD1d contains a large hydrophobic
The GM2-activator protein (GM2-AP) is a small lysosomal lipid transfer protein essential for the hydrolytic conversion of ganglioside GM2 to GM3 by beta-hexosaminidase A. The crystal structure of human apo-GM2-AP is known to consist of a novel beta-cup fold with a spacious hydrophobic interior.
The rhino mouse (hr(rh)hr(rh)) is a mutant strain characterized by a wrinkled and hairless skin with epidermal utriculi (pseudocomedones) and dermal cysts. The epidermal cysts have been extensively studied. The present work focused on the dermal cysts. By electron microscopy it was found that they
As birch pollen allergen enters epithelium of allergic patients via lipid rafts and caveola we began to analyse its putative amphiphilic and lipid ligands on atomic level using molecular modelling and computational ligand docking. We carry out 3D modelling docking with both experimentally verified
Invariant NKT (iNKT) cells are a conserved αβTCR(+) T cell population that can swiftly produce large amounts of cytokines, thereby activating other leukocytes, including neutrophilic granulocytes (neutrophils). In this study, we investigated the reverse relationship, showing that high neutrophil
Whereas research on CD1d has emphasized a few glycosyl ceramides, the broader family of four human CD1 antigen-presenting molecules binds hundreds of distinct self-lipids. Individual lipid types bind within CD1 grooves in different ways, such that they partially fill the groove, match the groove
Gaucher disease is the most common of the glycolipid storage disorders caused by the deficiency of glucocerebrosidase, an enzyme which hydrolyzes glucocerebroside to glucose and ceramide. Accumulation of the substrate leads to multiorgan dysfunction involving the brain, spleen, liver, lymph node and
BACKGROUND
Primary HIV infection can develop from exposure to HIV in the oral cavity. In previous studies, we have documented rapid and extensive binding of HIV virions in seminal plasma to intact mucosal surfaces of the palatine tonsil and also found that virions readily penetrated beneath the