Σελίδα 1 από 68 Αποτελέσματα
The constituent amino acids of reduced glutathione (GSH), GSH itself, and D-alpha-tocopherol inhibited 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced ornithine decarboxylase (ODC, L-ornithine carboxy-lyase, EC 4.1.1.17) activity in mouse epidermis in vivo and in vitro. The inhibitory effects of
D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) is a pharmaceutical excipient approved by Chinese NMPA and FDA of USA. It's widely applied as a multifunctional drug carrier for nanomedicine. The advantages of TPGS include P-glycoprotein (P-gp) inhibition, penetration promotion, apoptosis
Combination therapy employing siRNAs and antitumor drugs is a promising method for the treatment of solid tumors. However, regarding combined treatments involving siRNAs and chemotherapeutic reagents, most prior research has focused on the enhanced cytotoxicity against tumor cells To overcome the multidrug resistance (MDR) of P-glycoprotein (P-gp) substrate anticancer drugs, such as paclitaxel (PTX), a novel dual-functional prodrug, D-α-tocopherol polyethylene glycol succinate (TPGS) based PTX prodrug (TPGS-S-S-PTX), was synthesized here to fulfill the synergistic effect of
Liver cancer is the third leading cause of cancer-related deaths worldwide. Liver cancer stem cells (LCSCs) are a subpopulation of cancer cells that are responsible for the initiation, progression, drug resistance, recurrence, and metastasis of liver cancer. Recent studies have Although salinomycin sodium (SS) has shown in-vitro potential to inhibit cancer stem cell growth and development, its low water solubility makes it a poor candidate as an oral chemotherapeutic agent. To improve the bioavailability of SS, SS was encapsulated here using D-α-tocopherol polyethylene
We developed a strategy to formulate supraparamagnetic iron oxides (SPIOs) in nanoparticles (NPs) of biodegradable copolymer made up of poly(lactic acid) (PLA) and d-alpha-tocopherol polyethylene glycol 1000 succinate (TPGS) for medical imaging by magnetic resonance imaging (MRI) of high contrast
Nanomedicines have emerged as a promising treatment strategy for cancer. Multiple drug resistance due to overexpression of various drug efflux transporters and upregulation of apoptotic inhibitory pathways in cancer cells are major barriers that limit the success of chemotherapy. Here, we developed
Diethyldithiocarbamate (DDTC) injected i.p. inhibits remarkably and in a dose-dependent manner 12-O-tetradecanoylphorbol-13-acetate (TPA)-decreased glutathione (GSH) peroxidase and TPA-induced ornithine decarboxylase (ODC) activities in mouse epidermis in vivo. DDTC is more potent in inhibiting
We found previously that [d]-alpha-tocopherol (alpha-T) and [d]-gamma-tocopherol (gamma-T) are lipid antioxidants (thiobarbituric acid test) in model systems containing arachidonic acid (AA), cumene hydroperoxide, and Fe3+ and in smooth muscle cell (SMC) cultures challenged with AA. We now show that
OBJECTIVE
Drug resistance remains a major challenge for effective breast cancer chemotherapy. Resveratrol (Res) is a promising candidate for overcoming cancer chemoresistance, but it has low bioavailability due to poor absorption, and ready metabolism limits its application. This study aims to
Conventional chemotherapy is hampered by the presence of breast cancer stem cells (BCSCs). It is crucial to eradicating both the bulky breast cancer cells and BCSCs, using a combination of conventional chemotherapy and anti-CSCs drugs. However, the synergistic ratio of drug Brain cancer, up-regulated with transferrin receptor led to concept of transferrin receptor targeted anticancer therapeutics. Docetaxel loaded d-α-tocopherol polyethylene glycol 1000 succinate conjugated chitosan (TPGS-chitosan) nanoparticles were prepared with or without transferrin decoration. In
Low tumor targetability and multidrug resistance (MDR) are two major impediments to the success of cancer treatments. Nanomaterials which possess high tumor targetability and the ability to reverse the MDR are rare. This report describes a new type of self-assembling polyethylene
Recently, interest in tumor-targeted and site-specific drug release from nanoparticles as a means of drug delivery has increased. In this study, we report a smart nanosized micelle formed by hyaluronic acid (HA) conjugated with d-α-tocopherol succinate (TOS) using a disulfide bond as the linker