Σελίδα 1 από 21 Αποτελέσματα
BACKGROUND
The Ehrlich Ascitic Carcinoma (EAC) is an experimental transplantable neoplasm that develops in several species of mice. The maintenance of the tumor occurs in vivo. Thus, freezing the cells would reduce the number of passages between animals, ensuring genetic stability and storage for
OBJECTIVE
To investigate alterations in the transport of D-fructose across the rabbit jejunum when the gut is exposed in vitro to lipopolysaccharide (LPS), an endotoxin causative agent of sepsis.
METHODS
D-fructose intestinal transport was assesed employing three techniques: sugar uptake
The glucose consumption of cultured murine (C57BL/6N) peritoneal exudate macrophages is suppressed by pleural effusions, ascitic fluids, and sera from patients with advanced primary lung and gastric cancers. Analysis for the generation of 14C-labeled CO2 after [14C]glucose metabolism revealed the
Lipopolysaccharide (LPS) stimulates macrophages by activating NF-kappaB, which contributes to the release of tumor necrosis factor (TNF)-alpha and interleukin (IL)-6. 1,5-Anhydro-D-fructose (1,5-AF), a monosaccharide formed from starch and glycogen, exhibits anti-oxidant activity and enhances
D-Allose is a rare sugar, can be used as an ingredient in a range of foods and dietary supplements, has alimentary activities, especially excellent anti-cancer effects and used in assisting cancer chemotherapy and radiotherapy, etc. To develop a simple and low-cost process for D-allose production, a
1,5-Anhydro-D-fructose (AF) was first found in fungi and red algae. It is produced by the degradation of glycogen, starch and maltosaccharides with α-1,4-glucan lyase (EC 4.2.2.13). In vivo, AF is metabolized to 1,5-anhydro-D-glucitol (AG), ascopyrone P (APP), microthecin and other derivatives via
A novel glycoprotein GFG-3a with the molecular weight of 88.01 kDa and potent anti-tumor activity was isolated from the cultured mycelia of Grifola frondosa GF9801. GFG-3a was heat-sensitive with the decreasing anti-proliferative activity after treated from 56°C to 100°C for 10-120min. GFG-3a was a
OBJECTIVE
We sought to develop an assay to measure circulating fructose concentrations in pancreatic cancer patients.
METHODS
Using fructose dehydrogenase-catalyzed conversion of d-fructose to 5-ketofructose, followed by quantitation of MTT [3-(4,5-dimethylthiaze-syl)-2,5-diphenyltetrazolium
In the present study we describe the preparation and chemical characterization of a caramel with a high (70%) content of difructose dianhydrides (DFAs) and glycosylated derivatives (DFAs). This product was obtained by thermal activation (90 degrees C) of highly concentrated (90% w/v) aqueous
Apigenin (AP), as an anticancer agent, has been widely explored. However, the molecular targets of apigenin on tumor metabolism are unclear. Herein, we found that AP could block cellular glycolysis through restraining the tumor-specific pyruvate kinase M2 (PKM2) activity and expression and further
OBJECTIVE
D-Fructose-1,6-bisphosphate (FBP) is an intermediate in the glycolytic pathway, exerting pharmacological actions on inflammation by inhibiting cytokine production or interfering with adenosine production. Here, the possible antinociceptive effect of FBP and its mechanism of action in the
The specificity characteristics of transporters can be exploited for the development of novel diagnostic therapeutic probes. The facilitated hexose transporter family (GLUTs) has a distinct set of preferences for monosaccharide substrates, and while some are expressed ubiquitously (e.g., GLUT1),
Glycolysis, which is the primary energy source in cancer cells, is known to be controlled by allosteric regulators, as well as by reversible binding of glycolytic enzymes to cytoskeleton. We have previously found that different calmodulin antagonists decrease the levels of allosteric activators of
Cancer cells are characterized by a high rate of glycolysis, which is their primary energy source. Glycolysis is known to be controlled by allosteric regulators, as well as by reversible binding of glycolytic enzymes to cytoskeleton. We report here that clotrimazole
Two structurally novel homocucurbitane triterpenoid glycosides, machilusides A (1) and B (2), possessing an unprecedented C(36) skeleton with a D-fructose moiety incorporated into a cucurbitane nucleus forming unique cage-like tricyclic ring moieties, were isolated from the stem bark of Machilus