Σελίδα 1 από 16 Αποτελέσματα
Bioassay-guided fractionation of the EtOAc extract of the stem bark of Erythrina abyssinica (Leguminosae) resulted in the isolation of three new (1-3), along with 12 known (4-15) pterocarpan derivatives. Their chemical structures were determined by physicochemical and spectroscopic data analysis
Bioassay-guided fractionation of the MeOH extract of the stem bark of Erythrina lysistemon Hutch. resulted in isolation of pterocarpans (1-3), named erylysins A-C, along with nine known pterocarpans (4-12). Their structures were determined to be
Bioassay-guided fractionation of an EtOAc-soluble extract of the stem bark of Erythrina addisoniae (Leguminosae), using an in vitro PTP1B inhibitory assay, resulted in the isolation of three new (1-3) and three known (4-6) 2-arylbenzofuran derivatives. The new compounds were identified as
Bioassay-guided fractionation of the EtOAc extract of the root of Erythrina addisoniae (Leguminosae) resulted in the isolation of four new (1-4), along with 2 known prenylated isoflavonoids (5-6). The structures of the isolates were assigned on the basis of spectroscopic data analysis, focusing on
Inhibition of protein tyrosine phosphatase-1B (PTP1B) has been proposed as a therapy for treatment of type-2 diabetes and obesity. Bioassay-guided fractionation of an EtOAc-soluble extract of the root bark of Erythrina mildbraedii, using an in vitro PTP1B inhibitory assay, resulted in the isolation
As the insulin and leptin signaling pathway can be regulated by PTP1B, it has been suggested that compounds that reduce PTP1B activity or expression levels can be used for treating type 2 diabetes and obesity. In the course of our screening efforts on new PTP1B inhibitors, six new flavanones ( 1- 6)
It has been suggested that protein tyrosine phosphatase 1B (PTP1B) inhibitors might be a therapeutic target for the treatment of type 2 diabetes and obesity. A bioassay-guided phytochemical study of the EtOAc extract of the stem bark of Erythrina addisoniae (Leguminosae) resulted in the
High-resolution X-ray crystallography of the complex of the Gal/GalNAc-specific Erythrina corallodendron lectin with lactose identified the amino acid side chains that form contacts with the galactose moiety of the disaccharide. The contribution of these amino acids to the binding of different
A lectin was isolated from the saline extract of Erythrina speciosa seeds by affinity chromatography on lactose-Sepharose. The lectin content was about 265 mg/100g dry flour. E. speciosa seed lectin (EspecL) agglutinated all human RBC types, showing no human blood group specificity; however a slight
Lectin from a leaf of Erythrina indica was isolated by affinity chromatography on Lactamyl-Seralose 4B. Lectin gave a single band in polyacrylamide gel electrophoresis (PAGE). In SDS-gel electrophoresis under reducing and non-reducing conditions Erythrina indica leaf lectin (EiLL) split into two
A mutant of Erythrina corallodendron lectin was generated with the aim of enhancing its affinity for N-acetylgalactosamine. A tyrosine residue close to the binding site of the lectin was mutated to a glycine in order to facilitate stronger interactions between the acetamido group of the sugar and
Binding of the N-acetyllactosamine-specific lectin from Erythrina corallodendron (ECorL) to four glycosphingolipids has been tested using the microtiter well assay. The role of several amino acids in the binding site region was studied by combining binding assays and molecular modeling for native
In the course of our program to search for protein tyrosine phosphatase 1B (PTPB) inhibitors, five new 5-deoxyflavonoids along with eight known derivatives were isolated from EtOAc layer of the root bark of Erythrina abyssinica. Their structures were elucidated on the basis of spectroscopic (IR, UV,
Splenocytes from mice bearing a cachexia-inducing tumor (MAC16) have been fused with mouse myeloma cells to produce hybridomas, which have been cloned to produce antibody reactive to a material which copurified with a lipid-mobilizing factor isolated from the same tumor. The monoclonal antibody has