Σελίδα 1 από 26 Αποτελέσματα
This study examined the effects of genipin, isolated from Gardenia jasminoides Ellis, on d-galactosamine (GalN) and lipopolysaccharide (LPS)-induced hepatic apoptosis and liver failure. Mice were given an intraperitoneal injection of genipin (25, 50, 100 and 200mg/kg) 1h before GalN (700mg/kg)/LPS
The pathogenesis of sepsis is characterized by overwhelming inflammatory responses that lead to tissue damage and organ failure. Toll-like receptor (TLR) signaling is crucial for induction of hyperinflammatory responses and tissue injury during sepsis. Genipin, an aglycon of geniposide, has
Genipin is a component of Japanese traditional herbal medicine (Kampo), inchinkoto, and is used for the treatment of various liver injuries. However, there are few scientific evidence for its anti-inflammatory effects and mechanisms. In inflamed liver, proinflammatory cytokines including tumor
Tissue engineered nerve grafts (TENGs) are considered a promising alternative to autologous nerve grafting, which is considered the "gold standard" clinical strategy for peripheral nerve repair. Here, we immobilized tumor necrosis factor-α (TNF-α) inhibitors onto a nerve conduit, which was
Genipin is a metabolite derived from the herbal medicine Inchinko-to. Little is known about the mechanism of genipin action on acute liver injury through inflammatory cytokines. We examined the effects of genipin on production of TNF-alpha in vivo and in vitro. Mice were given GalN/LPS with or
Vascular inflammation process has been suggested to be an important risk factor in the development of atherosclerosis. Recently we reported that induction of peroxisome proliferator-activated receptor-γ (PPAR-γ) selectively inhibits vascular cell adhesion molecule-1 (VCAM-1) but not intercellular
To verify the anti-inflammatory potency of iridoids, seven iridoid glucosides (aucubin, catalpol, gentiopicroside, swertiamarin, geniposide, geniposidic acid and loganin) and an iridoid aglycone (genipin) were investigated with in vitro testing model systems based on inhibition of cyclooxygenase
OBJECTIVE
The edible blue pigments produced by gardenia fruits have been used as value-added colorants for foods in East Asia for 20 years. However, the biological activity of the blue pigments derived from genipin has not been reported.
RESULTS
The anti-inflammatory effect of blue pigments was
Cisplatin (CP) is a potent and widely used chemotherapeutic agent. However, the clinical benefits of CP are compromised because it elicits nephrotoxicity and ototoxicity. In this study, we investigated the nephroprotective effects of the phytochemical genipin (GP) isolated from the gardenia
BACKGROUND
Intervertebral discs (IVDs) are attractive targets for local drug delivery because they are avascular structures with limited transport. Painful IVDs are in a chronic inflammatory state. Although anti-inflammatories show poor performance in clinical trials, their efficacy treating IVD
Genipin, the aglycon of geniposide found in gardenia fruit has long been considered for treatment of inflammatory diseases in traditional oriental medicine. Genipin has recently been reported to have some pharmacological functions, such as antimicrobial, antitumor, and anti-inflammatory effects. The
OBJECTIVE
Bronchopulmonary dysplasia is the most common chronic lung disease of infancy and is associated with pulmonary hypertension (PH). Inhibition of glycogen synthase kinase (GSK)-3 β has been shown to attenuate lung injury and PH in hyperoxia-exposed newborn rats. Genipin has been widely used
Microglia are the prime effectors in immune and inflammatory responses of the central nervous system (CNS). Under pathological conditions, the activation of these cells helps restore CNS homeostasis. However, chronic microglial activation endangers neuronal survival through the release of various
The protective effects of genipin against lipopolysaccharide (LPS)-induced acute lung injury (ALI) have been reported; however, the mechanism is unclear. Genipin performs its pharmacological effects via activation of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT)
Genipin is the major active component of Gardeniae fructus and has been shown to ameliorate diabetes and insulin resistance in rat models. In this study, we first investigated the effect of genipin on obesity and the related lipid metabolism mechanisms in diet-induced obese rats. Our results showed