5 Αποτελέσματα
BACKGROUND OF THE INVENTION
The inability of CNS neurons to regenerate their axons after injury places severe limitations on the functional recovery that can occur after traumatic injury, stroke, or certain neurodegenerative diseases. Regenerative failure has been attributed in part to proteins
BACKGROUND OF THE INVENTION
Past early childhood, injury to the central nervous system (CNS) results in functional impairments that are largely irreversible. Within the brain or spinal cord, damage resulting from stroke, trauma, or other causes can result in life-long losses in cognitive, sensory
BACKGROUND OF THE INVENTION
Past early childhood, injury to the central nervous system (CNS) results in functional impairments that are largely irreversible. Within the brain or spinal cord, damage resulting from stroke, trauma, or other causes can result in life-long losses in cognitive, sensory
BACKGROUND OF THE INVENTION
Past early childhood, injury to the central nervous system (CNS) results in functional impairments that are largely irreversible. Within the brain or spinal cord, damage resulting from stroke, trauma, or other causes can result in life-long losses in cognitive, sensory
FIELD
This relates to the field of small molecule PNPase substrates and inhibitors as well as potassium-sparing diuretics and natriuretics and methods of their use.
BACKGROUND
With the notable exceptions of mineralocorticoid antagonists and epithelial sodium channel (ENaC) inhibitors, most