Σελίδα 1 από 18 Αποτελέσματα
Pinoresinol reductase and pinoresinol/lariciresinol reductase play important roles in an early step of lignan biosynthesis in plants. The activities of both enzymes have also been detected in bacteria. In this study, pinZ, which was first isolated as a gene for bacterial pinoresinol reductase, was
A lignan, lariciresinol, was isolated from Arabidopsis thaliana, the most widely used model plant in plant bioscience sectors, for the first time. In the A. thaliana genome database, there are two genes (At1g32100 and At4g13660) that are annotated as pinoresinol/lariciresinol reductase (PLR). The
CONCLUSIONS
A candidate gene for phenylcoumaran benzylic ether reductase in Arabidopsis thaliana encodes a peptide with predicted functional activity and plays a crucial role in secondary metabolism. Phenylcoumaran benzylic ether reductase (PCBER) is thought to be an enzyme crucial in the
Verticillium longisporum (VL) is one of the most devastating diseases in important oil crops from the family of Brassicaceae. The fungus resides for much time of its life cycle in the extracellular fluid of the vascular system, where it cannot be controlled by conventional fungicides. To obtain
BACKGROUND
The phenylpropanoid pathway is a source of a diverse group of compounds derived from phenylalanine, many of which are involved in lignin biosynthesis and serve as precursors for the production of valuable compounds, such as coumarins, flavonoids, and lignans. Consequently, recent efforts
A Linum usitatissimum LuERA1 gene encoding a putative ortholog of the ERA1 (Enhanced Response to ABA 1) gene of Arabidopsis thaliana (encoding the beta subunit of a farnesyltransferase) was analyzed in silico and for its expression in flax. The gene and the protein sequences are highly similar to
Sesame (Sesamum indicum) is an important oilseed crop which produces seeds with 50% oil that have a distinct flavor and contains antioxidant lignans. Because sesame lignans are known to have antioxidant and health-protecting properties, metabolic pathways for lignans have been of interest in
The cinnamyl alcohol dehydrogenase (CAD) multigene family in planta encodes proteins catalyzing the reductions of various phenylpropenyl aldehyde derivatives in a substrate versatile manner, and whose metabolic products are the precursors of structural lignins, health-related lignans, and various
Pinoresinol reductase (PrR) catalyzes the conversion of the lignan (-)-pinoresinol to (-)-lariciresinol in Arabidopsis thaliana, where it is encoded by two genes, PrR1 and PrR2, that appear to act redundantly. PrR1 is highly expressed in lignified inflorescence stem tissue, whereas PrR2 expression
Flax secoisolariciresinol diglucoside (SDG) lignan is a natural phytoestrogen for which a positive role in metabolic diseases is emerging. Until recently however, much less was known about SDG and its monoglucoside (SMG) biosynthesis. Lately, flax UGT74S1 was identified and characterized as an
The phenylpropanoid pathway is used in biosynthesis of a wide range of soluble secondary metabolites including hydroxycinnamic acid esters, flavonoids and the precursors of lignin and lignans. In Arabidopsis thaliana a small cluster of three closely related genes, UGT72E1-E3, encode
Linseed flax (Linum usitatissimum L.) is an industrially important oil crop, which includes large amounts of alpha-linolenic acid (18:3) and lignan in its seed oil. We report here the metabolic engineering of flax plants to increase carotenoid amount in seeds. Agrobacterium-mediated transformation
Arogenate dehydratase (ADT) catalyzes the final step of phenylalanine (Phe) biosynthesis. Previous work showed that ADT-deficient Arabidopsis (Arabidopsis thaliana) mutants had significantly reduced lignin contents, with stronger reductions in lines that had deficiencies in more ADT isoforms. Here,
Dirigent proteins impart stereoselectivity to phenoxy radical coupling reactions in plants and, thus, play an essential role in the biosynthesis of biologically active natural products. This includes the regioselective and enantioselective coupling and subsequent cyclization of two coniferyl alcohol
Dirigent proteins impart stereoselectivity on the phenoxy radical-coupling reaction, yielding optically active lignans from two molecules of coniferyl alcohol. By an unknown mechanism, they direct the coupling of two phenoxy radicals toward the formation of optically active (+)- or (-)-pinoresinol.