12 Αποτελέσματα
A gene fis1 from flax (Linum usitatissimum), which is induced in mesophyll cells at the site of rust (Melampsora lini) infection, is also expressed in vascular tissue, particularly in floral structures of healthy plants. This paper reports that the promoter controlling this expression is contained
Plants show enhanced phytoremediation of heavy metal contaminated soils particularly in response to fungal inoculation. Present study was conducted to find out the influence of Nickel (Ni) toxicity on plant biomass, growth, chlorophyll content, proline production and metal accumulation by L.
The current study was aimed at analyzing the differential effects of heavy metals (cadmium and chromium) and mycorrhizal fungus; Glomus intraradices on growth, chlorophyll content, proline production, and metal accumulation in flax plant (Linum usitatissimum L.). Heavy metal accumulation rate in
Oil bodies (OBs) are the intracellular particles derived from oilseeds. These OBs store lipids as a carbon resource, and have been exploited for a variety of industrial applications including biofuels. Oleosin and caleosin are the common OB structural proteins which are enabling biotechnological
Flax (Linum usitatissimum) is grown for its oil and its fiber. This crop, cultivated in temperate regions, has seen a renewed interest due to the presence of abundant molecules of interest for many applications. Little information is available about the behavior of flax during osmotic stress; yet
Rapid industrialization is the main reason of heavy metals contamination of soil colloids and water reservoirs. Heavy metals are persistent inorganic pollutants; deleterious to plants, animals and human beings because of accumulation in food chain. The aim of the current work was to evaluate the
Flax (Linum usitatissimum L.), one of the oldest cultivated crops, continues to be widely grown for oil, fiber and food. Furthermore, the plants show a metal tolerance dependent on species so is ideal for research. Present study was conducted to find out the influence of copper (Cu) toxicity on
Flax (Linum usitatissimum L.) is one of the oldest predominant industrial crops grown for seed, oil and fiber. The present study was executed to evaluate the morpho-physiological traits, biochemical responses, gas exchange parameters and phytoextraction potential of flax raised in differentially
Hydrogen sulfide (H2S) has been recently found as an important signaling molecule especially in root system architecture of plants. The regulation of root formation through H2S has been reported in previous works; while the profiling of metabolites in response to H2S
Drought stress, which is one of the most serious world environmental threats to crop production, might be compensated by some free living and symbiotic soil microorganisms. The physiological response of flax plants to inoculation with two species of arbuscular mycorrhizal (AM) fungi (Funneliformis
Expression of the fis1 gene from flax (Linum usitatissimum) is induced by a compatible rust (Melampsora lini) infection. Infection of transgenic plants containing a beta-glucuronidase (GUS) reporter gene under the control of the fis1 promoter showed that induction is highly localized to those leaf
The combined effects of yeast (1 ppm) and salinity on germination, seedling growth, metabolite accumulation and antioxidant defense system of flax (Linum usitatissimum) seeds grown at 100, 200 and 300 mM NaCl were studied. In this investigation, the germination was completely inhibited at 300 mM