13 Αποτελέσματα
Aberrant oxidative pathways of catecholamine neurotransmitters, i.e. dopamine and norepinephrine, are an important biochemical correlate of catecholaminergic neuron loss in some disabling neurodegenerative diseases of the elderly, notably Parkinson's disease. In an oxidative stress setting, under
Aberrant oxidation of norepinephrine (1) via the transient o-quinone has been implicated as a critical pathogenetic mechanism underlying the degeneration of noradrenergic cell bodies in the locus coeruleus in Parkinson's disease, the degeneration of noradrenergic nerve terminals in Alzheimer's
Skeletal muscle atrophy involves and requires widespread changes in skeletal muscle gene expression and signaling pathway, resulting in excessive loss of muscle mass and strength, which is associated with poor prognosis and the decline of life quality in several diseases. However, the The principal neuropathological feature of Parkinson's disease is the degeneration of melanized dopamine neurons in the substantia nigra pars compacta (SNc). Characteristic pathobiochemical changes in the parkinsonian SNc include a fall of both dopamine (DA) and glutathione levels (GSH), increased
The noradrenergic neurotransmitter (-)-norepinephrine (1) is very easily oxidized at physiological pH to an o-quinone (2) that normally cyclizes and subsequently oxidatively polymerizes to black melanin. In this investigation it is demonstrated that L-cysteine (CySH) can divert the melanin pathway
Food browning is undesirable as it causes deterioration in food quality and appearance. This phenomenon was related to polyphenol oxidase (PPO), which catalyzes conversion of phenolic compounds into o-quinones. The present work evaluated the use of chemical and natural anti-browning agents to
In this study we demonstrate for the first time that short-lived intermediate glutathione (GSH) conjugates (5-S-GSH-DA-o-quinone and 2-S-GSH-DA-o-quinone) must have first formed when GSH reacted with dopamine (DA)-derived DA-o-quinones without enzymatic catalysis in solutions. These intermediate
The initial step in the genesis of neuromelanin, a black polymeric pigment normally found in the cytoplasm of dopaminergic cell bodies in the substantia nigra (SN), is the autoxidation of dopamine (DA) to DA-o-quinone (1). In this investigation, it is demonstrated that in the presence of L-cysteine
Oxidation of the catecholaminergic neurotransmitter dopamine (1) at physiological pH normally results in formation of black, insoluble melanin polymer. In this study, it is demonstrated that L-cysteine (CySH) can divert the melanin pathway by scavenging the proximate o-quinone oxidation product of 1
Iron(II/III) and manganese(II) both catalyze the autoxidation of the neurotransmitter dopamine (DA) in the presence of L-cysteine (CySH) in buffered aqueous solution at pH 7.4. Fe2+/Fe3+ and CySH together generate the hydroxyl (HO.) and cysteinyl thiyl (CyS.) radicals. DA is oxidized by HO. to DA
Parkinson's disease (PD) is the second most common neurodegenerative disease. The characteristic feature of PD is the progressive degeneration of the dopaminergic (DAergic) neurons in the substantia nigra (SN). DAergic neurons in the SN accumulate black and insoluble membrane structures known as
Parkinson's disease (PD) is characterized by the selective loss of dopaminergic neurons in the substantia nigra (SN), and it has been suggested that dopamine is one of the main endogenous toxins in the genesis of PD. We demonstrated that thiol antioxidants (the reduced form of glutathione,
Aging and oxidative stress are two prominent pathological mechanisms for Parkinson's disease (PD) that are strongly associated with the degeneration of dopamine (DA) neurons in the midbrain. DA and other catechols readily oxidize into highly reactive o-quinone species that are precursors of