8 Αποτελέσματα
Activated microglia are crucial in the regulation of neuronal homeostasis and neuroinflammation. They also contribute to neuropathological processes after ischemic stroke. Thus, finding new approaches for reducing neuroinflammation has gained considerable attention. The metal ruthenium has gained
OBJECTIVE
Emerging data suggest that the molecular cell death pathways triggered by ischemic insults differ in the male and female brain. Cell death in males is initiated by poly(ADP-ribose) polymerase-1 (PARP-1) activation; however, manipulation of this pathway paradoxically increases ischemic
We report the synthesis, theoretical calculations, the antioxidant, anti-inflammatory, and neuroprotective properties, and the ability to cross the blood-brain barrier (BBB) of (Z)-α-aryl and heteroaryl-N-alkyl nitrones as potential agents for stroke treatment. The majority of nitrones compete with
OBJECTIVE
Over the past 5 years, experimental data have emerged that ischemia-induced cell death pathways may differ in males and females. Cell death in males is triggered by poly(ADP-ribose) polymerase activation and nuclear translocation of apoptosis-inducing factor. We have previously shown that
OBJECTIVE
Experimental studies indicate that estrogen typically, but not universally, has a neuroprotective effect in stroke. Ischemic stroke increases membrane-bound G protein-coupled estrogen receptor (GPER) distribution and expression in the brain of male but not female mice. We hypothesized that
Hypoxia-ischaemia in the developing brain results in brain injury with prominent features of apoptosis. In the present study, a third generation dipeptidyl broad-spectrum caspase inhibitor, quinoline-Val-Asp(Ome)-CH2-O-phenoxy (Q-VD-OPh), was tested in a model of unilateral focal ischaemia with
Chelatable zinc ions from synaptic vesicles have been suggested to be involved in neuronal death caused by stroke, epilepsy and head trauma. Elevated glucocorticoid concentration exacerbates such neuron loss, while low levels protect. We have tested the notion that the neuroprotective effect of
Acid-sensing ion channels (ASICs) are neuronal Na+-selective ion channels that open in response to extracellular acidification. They are involved in pain, fear, learning, and neurodegeneration after ischemic stroke. 2-Guanidine-4-methylquinazoline (GMQ) was recently discovered as the first nonproton