Σελίδα 1 από 40 Αποτελέσματα
Ribosome-inactivating proteins (RIPs) are a family of plant toxins that permanently damage ribosomes and possibly other cellular substrates, thus causing cell death. RIPs are mostly divided in two types: Type 1 RIPs that are single-chain enzymatic proteins, and type 2 RIPs that consist of an active
The antiproliferative activity of Saporin 6, a Ribosome-inactivating protein purified from the seeds of Saponaria officinalis has been tested on human breast cancer cells in vitro by the analysis (a) of colony formation in cells from surgical specimens from 27 patients bearing primary breast cancer
This work describes the application of an impedance-based measurement for the real time evaluation of targeted tumor therapies in cell culture (HeLa cells). We used a treatment procedure that is well established in cells and mice. Therein, tumor cells are treated with a combination of an epidermal
The use of cytotoxic agents to eliminate cancer cells is limited because of their nonselective toxicity and unwanted side effects. One of the strategies to overcome these limitations is to use latent prodrugs that become toxic in situ after being enzymatically activated in target cells. In this work
The expression of heat shock proteins (HSP) of the 65 kD family (groEL) has been observed by flow cytometry using murine monoclonal antibody (MoAb) anti-HSP 65 kD (ML30) on the surface of B (Daudi) or T (H9) lymphoma cells, on a monocyte cell line (U937) and also on a primary culture of a human
Thirty years ago, the type 1 ribosome-inactivating protein (RIP) saporin-S6 (also known as saporin) was isolated from Saponaria officinalis L. seeds. Since then, the properties and mechanisms of action of saporin-S6 have been well characterized, and it has been widely employed in the construction of
Saponin has been described to contain adjuvant activity in vaccination protocols, in protection against disease, and on humoral immune response. In this paper we describe the effect of a pure saponin from Quillaja saponaria (molina) on the immune response elicited in mice by two antigens, BSA and
Eight saporin peaks were obtained from the purification of seed extracts of Saponaria officinalis L. Saporin peak No. 6 (SAP-6) showed the highest activity in the inhibition of protein synthesis (98%) in an in vitro translation study. An immunotoxin (IT) was prepared from SAP-6 conjugated to a
The hydromethanolic extract of Sapindus saponaria L. aerial parts was investigated for antimicrobial activity (against several Gram-positive and Gram-negative bacteria and fungi) and capacity to inhibit the growth of different human tumor cell lines as also nontumor liver cells. The evaluated
The cytotoxic mechanism of the saponin QS-21 and its aglycone quillaic acid (QA) was studied on human gastric cancer cells (SNU1 and KATO III). Both compounds showed in vitro cytotoxic activity with IC50 values: 7.1 μM (QS-21) and 13.6 μM (QA) on SNU1 cells; 7.4 μM (QS-21) and 67 μM (QA)
Nine quillaic acid and five gypsogenin bisdesmosides were isolated from roots of Saponaria officinalis L. (Caryophyllaceae). Seven of the quillaic acid saponins possessed a 3-O-β-D-galactopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 3)]-β-D-glucuronopyranosyl unit, but differed from each other in
Human rhabdomyosarcoma cells express HER/erbB growth factors receptors. Receptors belonging to this family are overexpressed and play a role in many types of epithelial and neural cancer and have been selected as targets for cancer therapy. In this paper EGF-R, HER-2 and HER-3 receptors were tested
Saponaria officinalis L. (Caryophyllaceae), also known as fuller's herb or soapwort is a medicinal plant, which grows from Europe to Central Asia. Medicinal properties attributed to this plant include its antitussive and galactogogue properties. Recently, bisdesmodic saponins with very specific
Total methanolic extracts of Saponaria vaccaria seed derived from several varieties, as well as various purified components obtained through successive chromatographic separations of total extracts were evaluated for their growth inhibitory activity in WiDr (colon), MDA-MB-231 (breast), NCI-417
Ribosome inactivating proteins (RIPs) catalyze the hydrolytic depurination of one or more adenosine residues from eukaryotic ribosomes. Depurination of the ribosomal sarcin-ricin tetraloop (GAGA) causes inhibition of protein synthesis and cellular death. We characterized the catalytic properties of