Σελίδα 1 από 120 Αποτελέσματα
BACKGROUND
6-Shogaol is one of the major compounds in the ginger rhizome that may contribute to its anti-inflammatory properties. Confirmation of this contribution was sought in this study in Sprague- Dawley rats (200-250 g) treated with a single injection (0.5 ml of 1 mg/ml) of a commercial
Ginger, the rhizome of the plant Zingiber officinale , has received extensive attention because of its antioxidant, anti-inflammatory, and antitumor activities. Most researchers have considered gingerols as the active principles and have paid little attention to shogaols, the dehydration products of
Natural compounds containing vanilloid and Michael acceptor moieties appear to possess anti-cancer and chemopreventive properties. The ginger constituent shogaol represents one such compound. In this study, the anti-cancer potential of a synthetic novel shogaol analog 3-phenyl-3-shogaol (3-Ph-3-SG)
Disclosure of ultraviolet (UV) radiation is the key feature from environment to cause redness of the skin, inflammation, photoaging and skin cancer. 6-Shogaol, a spicy compound secluded from ginger, which shows anti-inflammatory effects. Present study was demonstrated the role of 6-Shogaol on UVB
Gout is a rheumatic disease that is manifestated by an intense inflammation secondary to monosodium urate crystal deposition in joints. In the present study, we assessed the effect of 6-shogaol (isolated active principle from ginger) on monosodium urate crystal-induced inflammation in mice; an
BACKGROUND
Zingiber officinale Rosc. (Zingiberaceae) has been traditionally used in Ayurvedic, Chinese and Tibb-Unani herbal medicines for the treatment of various illnesses that involve inflammation and which are caused by oxidative stress. Although gingerols and shogaols are the major bioactive
Ginger extracts have been reported to have anti-inflammatory, anti-oxidant, and anti-cancer effects. [6]-shogaol is one of the most bioactive components of ginger rhizomes. This study assessed the [6]-shogaol's ability to protect cultured primary rat astrocytes against lipopolysaccharide
Hexahydrocurcumin, 1-dehydro-[6]-gingerdione, 6-dehydroshogaol and 6-shogaol were evaluated for their antioxidant and anti-inflammatory activities in the present study. The relative antioxidant potencies of ginger compounds decreased in similar order of 1-dehydro-[6]-gingerdione,
6-Shogaol, a pungent agent isolated from Zingiber officinale Roscoe, has been known to have anti-tumor and anti-inflammatory effects. However, the anti-inflammatory effects and biological mechanism of 6-Shogaol in LPS-activated BV2 microglia remains largely unknown. In this study, we evaluated the
The prevalence of type 2 diabetes mellitus has been increasing worldwide and more than two thirds of the patients may develop diabetic nephropathy (DN). However, the efficiency of existing approaches on DN progression is limited. 6-Shogaol (6-SG), a major dehydrated derivative of gingerols,
Endometriosis (EM) is one of the most common gynaecological disorder affecting women in their reproductive age. Mechanisms involved in the pathogenesis of EM remains poorly understood, however inflammatory responses have been reported to be significantly involved. The efficacy of 6-shogaol on
6-Shogaol can be extracted from ginger and has been shown to exert anti-inflammatory and antioxidant activities, which are potentially relevant to the treatment of central nervous system disorders. Oxidative stress and inflammation are closely associated with ischemic injury and can eventually
Asthma, a common disorder associated with airway inflammation and hyperresponsiveness, remains a significant clinical burden in need of novel therapeutic strategies. Patients are increasingly seeking complementary and alternative medicine (CAM) approaches to control their symptoms, including the use
Nuclear factor-kappaB (NF-κB) and activator protein 1 (AP-1) is a major transcription factor which regulates many biological and pathological processes such as inflammation and cell proliferation, which are major implicates in cancer progression. [6]-Shogaol ([6]-SHO) is a major constituent of
[This corrects the article DOI: 10.18632/oncotarget.16719.].