English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Clinical Cancer Research 2018-May

A Model Linking Sickle Cell Hemoglobinopathies and SMARCB1 Loss in Renal Medullary Carcinoma.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Pavlos Msaouel
Nizar M Tannir
Cheryl Lyn Walker

Keywords

Abstract

Renal medullary carcinoma (RMC) is a highly aggressive malignancy that predominantly afflicts young adults and adolescents with sickle hemoglobinopathies. It is characterized by complete loss of expression of the chromatin remodeler and tumor suppressor SMARCB1 Despite therapy, the outcomes of patients with RMC remain very poor, highlighting the need to understand the etiology of this cancer, and develop new diagnostic, preventive, and therapeutic strategies. A key knowledge gap in RMC biology is why sickle hemoglobinopathies predispose to the development of this cancer. We propose a model wherein the extreme conditions of hypoxia and hypertonicity of the renal medulla, combined with regional ischemia induced by red blood cell sickling, activate DNA repair mechanisms to drive deletions and translocations in SMARCB1, which is localized in a fragile region of chromosome 22. This mechanism would explain the linkage between RMC and sickle hemoglobinopathies, as well as the age dependence and predilection of RMC toward the right kidney.Significance: This perspective proposes an integrated and testable model of renal medullary carcinoma pathogenesis. Insights provided by this model can additionally inform other malignancies arising from the renal medulla and/or associated with loss of the SMARCB1 tumor suppressor gene. Clin Cancer Res; 24(9); 2044-9. ©2018 AACR.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge