English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Diabetes/Metabolism Research and Reviews 2014-Oct

A novel potential therapy for vascular diseases: blood-derived stem/progenitor cells specifically activated by dendritic cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yael Porat
Efrat Assa-Kunik
Michael Belkin
Michael Krakovsky
Itschak Lamensdorf
Revital Duvdevani
Galit Sivak
Mark J Niven
Shlomo Bulvik

Keywords

Abstract

BACKGROUND

Vascular diseases are a major cause of morbidity and mortality, particularly in diabetic patients. Stem/progenitor cell treatments with bone marrow-derived cells show safety and promising outcomes, albeit not without some preprocedural adverse events related to cell collection and mobilization. We describe a novel technology for generating a therapeutic population (BGC101) of enriched endothelial progenitor cells (EPCs) from non-mobilized blood, using dendritic cells to specifically direct stem/progenitor cell activity in vitro.

RESULTS

Selected immature plasmacytoid and myeloid dendritic cells from 24 healthy and two diabetic donors were activated with anti-inflammatory and pro-angiogenic molecules to induce specific activation signals. Co-culturing of activated dendritic cells with stem/progenitor cells for 12-66 h generated 83.7 ± 7.4 × 10(6) BGC101 cells with 97% viability from 250 mL of blood. BGC101, comprising 52.4 ± 2.5% EPCs (expressing Ulex-lectin, AcLDL uptake, Tie2, vascular endothelial growth factor receptor 1 and 2, and CD31), 16.1 ± 1.9% stem/progenitor cells (expressing CD34 and CD184) and residual B and T helper cells, demonstrated angiogenic and stemness potential and secretion of interleukin-8, interleukin-10, vascular endothelial growth factor and osteopontin. When administered to immunodeficient mice with limb ischemia (n = 40), BGC101 yielded a high safety profile and significantly increased blood perfusion, capillary density and leg function after 21 days. Cell tracking and biodistribution showed that engraftment was restricted to the ischemic leg.

CONCLUSIONS

These observations provide preliminary evidence that alternatively activated dendritic cells can promote the generation of EPC-enriched stem/progenitor cells within a 1-day culture. The resulting product BGC101 has the potential for treatment of various vascular conditions such as coronary heart disease, stroke and peripheral ischemia.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge