English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Life Sciences 2019-Aug

Activation of cannabinoid type 2 receptor protects skeletal muscle from ischemia-reperfusion injury partly via Nrf2 signaling.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Mengzhou Zhang
Miao Zhang
Linlin Wang
Tianshui Yu
Shukun Jiang
Penghao Jiang
Yingfu Sun
Jingbo Pi
Rui Zhao
Dawei Guan

Keywords

Abstract

AIMS
Cannabinoid type 2 (CB2) receptor activation has been shown to attenuate IRI in various organs. NF-E2-related factor (Nrf2) is an anti-oxidative factor that plays multiple roles in regulating cellular redox homeostasis and modulating cell proliferation and differentiation. The protective effects of CB2 receptor activation on skeletal muscle IRI and the underlying mechanism that involves Nrf2 signaling remain unknown.

MAIN METHODS
We evaluated the in vivo effect of CB2 receptor activation by the CB2 receptor agonist AM1241 on IR-induced skeletal muscle damage and early myogenesis. We also assessed the effects of CB2 receptor activation on C2C12 myoblasts differentiation and H2O2-induced C2C12 myoblasts damage in vitro, with a focus on the mechanism of Nrf2 signaling.

KEY FINDINGS
Our results showed that CB2 receptor activation reduced IR-induced histopathological lesions, edema, and oxidative stress 1 day post-injury and accelerated early myogenesis 4 days post-injury in mice. Nrf2 knockout mice that were treated with AM1241 exhibited deteriorative skeletal muscle oxidative damage and myogenesis. In vitro, pretreatment with AM1241 significantly increased the expression of Nrf2 and its nuclear translocation, attenuated the decrease in H2O2-induced C2C12 cell viability, and decreased reactive oxygen species generation and apoptosis. CB2 receptor activation also significantly enhanced C2C12 myoblasts differentiation, which was impaired by silencing Nrf2.

SIGNIFICANCE
Overall, CB2 receptor activation protected skeletal muscle against IRI by ameliorating oxidative damage and promoting early skeletal muscle myogenesis, which was partly via Nrf2 signaling.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge