English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta Medica 2014-Aug

Antioxidative activity of diarylheptanoids from the bark of black alder (Alnus glutinosa) and their interaction with anticancer drugs.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jelena Dinić
Miroslav Novaković
Ana Podolski-Renić
Sonja Stojković
Boris Mandić
Vele Tešević
Vlatka Vajs
Aleksandra Isaković
Milica Pešić

Keywords

Abstract

Diarylheptanoids belong to polyphenols, a group of plant secondary metabolites with multiple biological properties. Many of them display antioxidative, cytotoxic, or anticancer actions and are increasingly recognized as potential therapeutic agents. The aim of this study was to evaluate antioxidant and cytoprotective activity of two diarylheptanoids: platyphylloside 5(S)-1,7-di(4-hydroxyphenyl)-3-heptanone-5-O-β-D-glucopyranoside (1) and its newly discovered analog 5(S)-1,7-di(4-hydroxyphenyl)-5-O-β-D-[6-(E-p-coumaroylglucopyranosyl)]heptane-3-one (2), both isolated from the bark of black alder (Alnus glutinosa). To that end, we have employed a cancer cell line (NCI-H460), normal human keratinocytes (HaCaT), and peripheral blood mononuclear cells. The effects on cell growth were assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay. Cell death was examined by annexin V/propidium iodide staining on a flow cytometer. Reactive oxygen species production was examined by dihydroethidium staining. Mitochondrial structure and doxorubicin localization were visualized by fluorescent microscopy. Gene expression of manganese superoxide dismutase and hypoxia-inducible factor-1α was determined by reverse transcription polymerase chain reaction. Diarylheptanoids antagonized the effects of either doxorubicin or cisplatin, significantly increasing their IC50 values in normal cells. Diarylheptanoid 1 induced the retention of doxorubicin in cytoplasm and reduced mitochondrial fragmentation associated with doxorubicin application. Diarylheptanoid 2 reduced the reactive oxygen species production induced by cisplatin. Both compounds increased the messenger ribonucleic acid expression of enzymes involved in reactive oxygen species elimination (manganese superoxide dismutase and hypoxia-inducible factor-1α). These results indicate that neutralization of reactive oxygen species is an important mechanism of diarylheptanoid action, although these compounds exert a considerable anticancer effect. Therefore, these compounds may serve as protectors of normal cells during chemotherapy without significantly diminishing the effect of the applied chemotherapeutic.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge